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Virtual spectrophotometric measurements
have important applications in biologically
and physically based rendering. These mea-
surements are used to evaluate reflectance
and transmittance models through compar-
isons with actual spectrophotometric mea-
surements. Moreover, they are also used to
generate spectrophotometric data, which are
dependent either on the wavelength or on
the illuminating geometry of the incident ra-
diation, from previously validated models.
In this paper the ray casting based formu-
lation for virtual spectrophotometers is dis-
cussed, and an original ray density analysis
is presented, which increases the efficiency
of these virtual devices. Specifically, a math-
ematical bound based on probability theory
is proposed to determine the number of rays
needed to obtain asymptotically convergent
readings in the shortest possible computa-
tion time. Practical experiments are provided
which illustrate the validity and usefulness of
the proposed approach.
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The group of measurements necessary to charac-
terize both the color and surface finish of an ob-
ject is called the measurement of appearance of that
object [20]. This group of measurements involves
the spectral energy distribution of propagated light,
measured in terms of reflectance and transmittance,
and the spatial distribution of that light, measured
in terms of the bidirectional reflectance distribution
function (BRDF) and the bidirectional transmittance
distribution function (BTDF). As stated by [20], the
variations in the spectral energy distribution affect
appearance characteristics such as hue, lightness and
saturation, while the changes in the spatial distribu-
tion affect appearance characteristics such as gloss,
reflection haze, transmission haze, luster and translu-
cency. The measurement of these appearance charac-
teristics is crucial for realistic rendering applications,
as was noted in the recent Workshop on Rendering,
Perception and Measurement [11].
There are many scattering models in the computer
graphics literature classified as reflectance and trans-
mittance models. This classification is in many cases
not entirely accurate since they only model the
BRDF and BTDF using reflectance and transmit-
tance values, which correspond to input data, as scal-
ing factors or “weights” for the spatial distribution
of the scattered light. For example, the multiple-
layer model proposed by [17] can be used to render
a maple leaf under different lighting conditions, pro-
vided its reflectances and transmittances for different
wavelengths and illuminating geometries are avail-
able as data for the model. Similarly, in [4] a non-
deterministic reconstruction approach is applied to
a biological system (a leaf model) where the recon-
struction is made on the basis of already known data.
The question is now: Where do the data for the these
models come from? This question highlights two im-
portant issues related to biologically and physically
based rendering. First, it shows the need to develop
models to compute reflectances and transmittances,
especially for organic materials, as considered in [3],
for example. Second, it shows the need to develop
accurate and efficient spectral measurement proce-
dures, as pointed out in the recent Workshop on
Metrology and Modeling of Color and Appearance1.
The latter issue is addressed in this paper.
A spectrophotometer is defined to be any instru-
ment for measuring spectral distribution of reflected
and transmitted radiant power, and spectrophotom-
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etry is defined as the quantitative measurement of
reflection and transmission properties as a function
of wavelength [2]. Spectrophotometers can also be
used to determine the absorption characteristics of
an object as a function of wavelength. In this paper
we are mostly interested in computer simulations of
these devices, henceforth called virtual spectropho-
tometers, aimed at biologically and physically based
rendering applications. However, the techniques pre-
sented in this paper can also be applied to other fields
such as colorimetry, solar engineering and remote
sensing.
Virtual spectrophotometers are normally imple-
mented using ray casting algorithms combined with
stochastic techniques applied to particle transport
simulations [9]. The purpose of these devices is to
determine the numerical value of an estimand, or ex-
pected value, to which the readings of reflectance, or
transmittance, of a model converge. This estimand
will correspond to a reflectance, or transmittance,
value for a given wavelength and illuminating geom-
etry. Note that we will focus on reflectance, includ-
ing transmittance by analogy when discussing virtual
spectrophotometric measurements since it is handled
similarly to reflectance.
Virtual spectrophotometers may sometimes provide
estimates with low variance with respect to the es-
timand in the early stages of the simulation due to
their nondeterministic nature, i.e., after using a small
number of sample rays. Since the value of the esti-
mand is unknown before the simulation, these ear-
lier estimates are not reliable, and estimates within
the region of asymptotic convergence of the esti-
mand are, therefore, desired. In fact, if one knew
a priori the value of the estimand there would be no
point in carrying out virtual spectrophotometric mea-
surements. To ensure that the estimates for a given
model are within the asymptotic convergence re-
gion, a brute-force approach, which consists of using
a very large number of sample rays – in some cases
up to 108 rays [12] – is usually applied. However, the
application of this strategy results in a high compu-
tational overhead in terms of processing time. This
overhead becomes rather prohibitive when the simu-
lations involve a large number of measurements for
different wavelengths and finer incidence sampling
resolutions.
In this paper we discuss the main aspects of vir-
tual spectrophotometry and perform a ray density
analysis to determine the least number of sample
rays required to obtain estimates within the region

of asymptotic convergence of the estimand with high
confidence, thus reducing the processing time sub-
stantially. As noted earlier, the determination of an
appropriate ray density, or sample size, shall not de-
pend on the knowledge about the value of the es-
timand or on its variance. This can be achieved by
using the exponential Chebyshev inequality [27],
adapting it to the requirements of spectrophotome-
tric measurements aimed at rendering applications.
Numerical experiments involving reflectance mod-
els with different levels of complexity illustrate its
applicability. An extended abstract of the paper was
presented at a conference as a poster [7].
The remainder of this paper is organized as follows.
The next section provides the physics background
for the discussion that follows. Section 3 outlines
the practical applications of virtual spectrophotome-
ters and describes their stochastic formulation. Sec-
tion 4 discusses the applicability of inequalities usu-
ally used in particle transport simulations and intro-
duces the exponential Chebyshev inequality to the
rendering literature. Section 5 describes the proce-
dures used in the evaluation of the usefulness of the
proposed approach and discusses the results of the
experiments. The paper closes with a summary and
directions for future research.

2 Spectrophotometric background

2.1 Reflectance and transmittance terms

Reflectance and transmittance are important terms
used in the description of the appearance of objects
or surfaces. The reflectance of a given surface can be
defined as the fraction of light at wavelength λ in-
cident from a direction ψi that is neither absorbed
into nor transmitted through the surface [26], and it
is denoted by ρ(λ,ψi). Similarly, the fraction of light
transmitted through the surface is called the trans-
mittance, τ(λ,ψi). The light that is neither reflected
nor transmitted by the surface is absorbed. The pa-
rameter that describes the amount of absorbed light
is absorptance [1], denoted by α(λ,ψi). The sum
of the reflectance, transmittance and absorptance is
one.
In computer graphics we are interested in the amount
of light hitting a surface or film plane during a set
period of time. Radiant power or flux, denoted by Φ
(measured in watts, or joules per second), is there-
fore often used, as pointed out by [26]. In this context
reflectance can be defined as the ratio of reflected
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flux to incident flux [24]. Similarly, transmittance
can be defined as the ratio of transmitted flux to inci-
dent flux.
Other important terms used in the description of ap-
pearance of objects are the reflectance and transmit-
tance factors. The reflectance factor, denoted by R,
is defined as the ratio of flux reflected from the spec-
imen to flux reflected from a perfect reflecting dif-
fuser under the same spectral and geometrical con-
ditions of measurement [2]. Similarly, the transmit-
tance factor, denoted by T , is defined as the ratio
of flux transmitted by the specimen to flux transmit-
ted by a perfect transmitting diffuser under the same
spectral and geometrical conditions of measurement.
There are different types of reflectance (or trans-
mittance) depending on the incident and reflected
(transmitted) solid angles associated with the inci-
dent and reflected (transmitted) beam geometry. [24]
distinguish three types of solid angles: directional,
conical and hemispherical. There are, therefore, nine
possible combinations of solid angles resulting in
nine types of reflectance. For instance, if the inci-
dent beam is collimated and the collection of the
reflected flux is performed taking into account the
whole hemisphere above the plane of the specimen,
then directional-hemispherical reflectance is being
measured.

2.2 General characteristics of actual
spectrophotometers

Actual measurements of reflectance and transmit-
tance are performed using spectrophotometers
equipped with an integrating sphere [21]. An inte-
grating sphere is usually used to measure the hemi-
spherical reflectance factor, i.e., a reflectance fac-
tor for a hemispherical reflected solid angle [24].
The numerical values of the reflectance and the re-
flectance factor are, however, identical under the
conditions of hemispherical collection [13].
For absolute measurements, the sphere wall is the
standard, and the integrating sphere theory [14] com-
pensates for the absolute reflectance of the sphere
wall by mathematically treating the wall reflectance
as unity. Hence, the hemispherical measurements
made with such integrating spheres correspond to
absolute values of reflectance (or transmittance),
which are subject to small errors associated with
factors such as aperture losses, small values of non-
uniformity of sphere wall reflectance and stray re-
flectance from specimen mounts [29].

The precision of a real spectrophotometer is esti-
mated by its ability to replicate a measurement for
a given specimen under the same spectral and ge-
ometrical conditions [21]. The best-designed, best-
constructed and best-calibrated spectrophotometers
still yield results that differ from one measurement
to the next. According to [23], the differences among
readings should be quite small and randomly differ-
ent. These differences, or uncertainties, are net re-
sults of combinations of many small fluctuations due
to independent variations of different components of
the instrument, different factors in the environment
and how the specimen is handled. In theory, a spec-
trophotometer is considered to be of high precision
if the spectral measurements have an uncertainty, µ,
of approximately ±0.001 [21, 23]. In practice, how-
ever, spectrophotometers usually have an absolute
precision between 0.993 and 0.995 [29]. The accu-
racy of a spectrophotometer is measured by the abil-
ity of the device to provide, for given illuminating
and viewing geometries, the true spectral reflectance
and transmittance of a given specimen, apart from
random uncertainties occurring in repeated measure-
ments [21].

3 Virtual spectrophotometry

3.1 Applications

The use of virtual measurement devices gives us con-
trol over the spectral data generation from computer
models and allows us to perform experiments at dif-
ferent sampling resolutions, which are essential re-
quirements for rendering applications, as pointed out
by [22]. In the computer graphics literature there are
a reasonable number of studies of actual and virtual
goniophotometers which measure BRDF and BTDF.
To the best of our knowledge, there are no detailed
descriptions and analyses of the performance and
accuracy of virtual spectrophotometers. Moreover,
when virtual measurement devices are discussed,
they are usually presented in connection with a scat-
tering model. For example, [15] have used a device
for spectral and spatial measurements, a virtual go-
niospectrophotometer, presented as an optics model
and a capture dome used in conjunction with a geo-
metric model of surface microstructure. In this paper
the formulation, accuracy and efficiency of virtual
spectrophotometers are discussed independently of
the reflectance and transmittance model being used.
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Two applications of virtual spectrophotometers are
especially relevant for biologically and physically
based rendering. The first application corresponds
to virtual spectrophotometric measurements aimed
at the testing and evaluation of reflectance models
through comparisons with actual spectrophotometric
measurements. Obviously, reflectance models can
be verified against measurements of real materials.
However, in order to obtain the readings from the
reflectance models in the first place one must per-
form a computer simulation of the inputs and out-
puts of the model, i.e., use a virtual spectrophotome-
ter. Moreover, the formulation of this virtual device
has to reproduce actual measurement conditions as
faithfully as possible to minimize the introduction
of bias in the comparisons. It may be argued that
wildly different reflectance models can provide the
same reflectance for a given illuminating, or inci-
dence, geometry. However, for practical purposes the
evaluation of a computer model will take into ac-
count how close, quantitatively and qualitatively, the
overall spectral curves provided by this model are
to the actual spectral curves for different measure-
ment instances. For example, suppose that the spec-
tral curves provided by model A have an average dis-
crepancy of 5% with respect to the actual curves and
the curves provided by model B have an average dis-
crepancy of 30%. If the rendering pipeline has other
sources of errors of small magnitude then model A is
appropriate, and if the errors in the pipeline are larger
then model B is a better choice assuming that this re-
sults in an overall speed improvement.
The second application corresponds to spectropho-
tometric data generation from previously validated
models. This may involve a large number of mea-
surements of different wavelengths and illuminating
geometries. Such data can sometimes be found in the
literature where actual measurements from real ma-
terials are reported. However, more often it is not
available and even when it is available it is only for
a restricted number of measurement configurations.
For example, the most comprehensive set of experi-
ments involving leaf optical properties performed to
date [19] was limited to a small number of illuminat-
ing geometries.
Although these applications usually involve re-
flectance and transmittance measurements, they can
be extended to other phenomena as well. For ex-
ample, commercial surfaces such as paint, plastics,
papers and textiles, both matte and glossy, show
some degree of retroreflection, i.e., reflectance in the

Fig. 1. Sketch of a virtual spectrophotometer

incident direction. This phenomenon can be mea-
sured easily using a virtual spectrophotometer when
an appropriate reflectance model for such a surface is
provided.

3.2 Formulation of virtual
spectrophotometers

Emitters and specimens used in actual measurements
usually have circular areas [12, 14, 19, 29], which
can be represented by disks with radii r1 and r2 sep-
arated by a distance D (Fig. 1). A spectrophotometer
with integrating sphere is simulated by sending (or
shooting) sample rays from the emitter towards the
specimen. These rays arrive at the specimen through
a solid angle, ωi , in the direction of incidence ψi ,
which is given by a pair of spherical coordinates
(φi, θi) (Fig. 1). We denote the total number of sam-
ple rays used in a virtual spectrophotometric mea-
surement by N . For the sake of compactness we may
also represent the sample ray density by log10 N .
Consider N rays shot towards the specimen for
a given wavelength λ. One can assume that each ray
carries the same amount of radiant power, Φ. If the
total radiant power to be shot is Φi , then the radiant
power carried by each ray is given by [26]:

Φray(λ)= Φi(λ)

N
. (1)
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Recall that reflectance describes the ratio of reflected
power to incident radiant power and transmittance
describes the ratio of transmitted radiant power to in-
cident power [24]. Considering this ratio, if m rays
are reflected towards the upper hemisphere Ωr , the
reflectance of the specimen with respect to a given
wavelength λ of the incident light will be given by:

ρ(λ,ωi,Ωr)= m

N
. (2)

Therefore, one can simply count the number of
rays reflected to the upper hemisphere to determine
a specimen’s reflectance, i.e., a virtual spectropho-
tometer does not use an integrating sphere to col-
lect the reflected rays. The specimen’s transmittance
is calculated in a similar manner, i.e., by count-
ing the number of rays transmitted to the lower
hemisphere.
Model-dependent issues, such as the use of weights
associated with rays, will not be dealt with in this pa-
per. In the same way that an actual spectrophotome-
ter is completely independent of how the specimen
interacts with light, a virtual spectrophotometer shall
also be independent of the reflectance model being
tested. Moreover, these weights are usually based
on reflectances and transmittance values. As men-
tioned before, if we knew these values a priori there
would be no point in carrying out spectrophotometric
measurements.
For applications involving data generation from
a previously validated model, the sample rays are
collimated since we are basically measuring direct-
ional-hemispherical reflectance [24]. In this case, the
sample rays have the same origin and hit the spec-
imen at the same point. For applications involving
comparisons with actual measurements, as men-
tioned earlier, the actual measurement conditions
must be reproduced as faithfully as possible. In these
situations we are measuring conical-hemispherical
reflectance [24], which requires the generation of
sample rays distributed angularly according to the
geometrical arrangement of the surfaces used to
represent the emitter and the specimen. As men-
tioned by [12], the incident radiation from an emitter
shows no preference for one angular region over
the other. So, in order to simulate these measure-
ment conditions, the origins and targets of the rays
are random points (or sample points) chosen on the
disks used to represent the emitter and the specimen,
respectively.
Several sampling strategies may be used to select
the sample points on the disks [26]. In this paper

we do not intend to determine the most accurate
or the most efficient sampling strategy. The mer-
its and drawbacks of different sampling strategies
have been adequately covered elsewhere [13, 26].
We did, however, apply two different and well-
known strategies to select the random points used
in the first set of experiments (Sect. 5) in order to
increase the scope of observations. For the same rea-
son, we used two different reflectance models in
these experiments.
One of the sampling strategies used in our experi-
ments is based on standard random sampling [26]. It
consists of generating sample points inside a square
with sides 2r and throwing away points lying out-
side an inscribed disk of radius r [12]. The sample
points in the square are generated using uniformly
distributed random numbers ξ1 and ξ2 on the interval
[0, 1] and the transformation

(x, y)= r(2ξ1 −1, 2ξ2 −1), (3)

where the pair (x, y) corresponds to the coordinates
of a sample point.
The other strategy used in our experiments is based
on the classical Monte Carlo stratified sampling or
jittered sampling [26]. It uses a warping transfor-
mation to guarantee that the sample points are rea-
sonably equidistributed on a disk, and enables the
computation of the pair (x, y) through the warping
function

(x, y)= (2πξ1, r
√
ξ2). (4)

After generating the x and y coordinates of a sam-
ple point, using either approach mentioned above,
the z coordinate is added. For a sample point on
the specimen, z is equal to zero, and, for a sam-
ple point on the emitter, z will correspond to the
distance D between the disks (Fig. 1), which is
given by the distance between the emitter and the
specimen mount of the integrating sphere of a real
spectrophotometer. Finally, to obtain the origin
of a sample ray, the corresponding sample point
(x, y, z) on the emitter shall be rotated according to
a specified incidence geometry given by φi and θi
(Fig. 1).

4 Ray density analysis

The main question to be addressed when perform-
ing a virtual spectrophotometric measurement is how
many rays should be cast by the emitter element,
i.e., how large should N be. Using a sufficiently
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large number of sample rays, one will have a high
probability of obtaining estimates within the region
of asymptotic convergence of the expected value
of reflectance, or transmittance, being measured ac-
cording to the Bernoulli theorem (Sect. 4.1). How-
ever, as shown by numerical experiments presented
in Sect. 5 (Fig. 3), the processing time grows lin-
early with respect to the total number of sample rays
N since the cost of the algorithm is constant per
ray.
The purpose of the following analysis is to deter-
mine a satisfactory bound for N such that we can
obtain estimates of reflectance ρ, or transmittance τ ,
with a higher reliability/cost ratio. In other words, we
want to obtain estimates within the region of asymp-
totic convergence and reduce the processing time. In
this context the term “satisfactory” means taking into
account the uncertainty of the real spectrophotome-
ter, whose readings we are comparing the virtual
spectrophotometric measurements with, and aiming
at an error tolerance for ρ, or τ , compatible with ren-
dering requirements. Before coming to the specifics
of the criterion proposed in this paper to select a sat-
isfactory bound for N , we review some relevant con-
cepts in the next section.
The application of Monte Carlo sampling strategies
has been extensively explored in the rendering lit-
erature. As mentioned earlier, the application of ac-
curacy evaluation techniques to Monte Carlo simu-
lations usually presents the paradox of requiring as
input value the estimand whose calculation is the
goal of the simulation. Moreover, the variance of the
stochastic process used to compute the estimand is
not known a priori either. These drawbacks are usu-
ally overcome by pre-estimating the variance of the
stochastic process, so that the accuracy evaluation
techniques can be applied. In order to obtain these
pre-estimated values one usually needs to cast a first
set of rays in the simulation, which in turn demands
some computational effort to guarantee reasonably
accurate pre-estimates.
At this point we wish to remind the reader that the
strategy used in this paper to determine a satisfac-
tory bound for N assumes neither a previous knowl-
edge of the variance nor the computation of variance
pre-estimates. For this reason, we do not make spe-
cific references to previous work on the application
of Monte Carlo methods and variance pre-estimation
techniques presented in the rendering literature. The
reader interested in a comprehensive survey on this
topic is referred to [13].

4.1 Bernoulli’s theorem and Chebyshev’s
inequality

A random variable ζ that takes two values 1 and
0 with probabilities p (“success”) and q (“fail-
ure”), where p+q = 1, is called a Bernoulli random
variable [27]. A probabilistic model of k indepen-
dent sampling experiments with two possible out-
comes occurring with probabilities p and q is called
a Bernoulli trial [28].
Suppose that ζ1, ζ2, . . . , ζk are the outcomes of
independent Bernoulli trials. The expectation of
a Bernoulli variable ζi is given by

E(ζi)= p. (5)

As stated by [27], if we define the sum of k Bernoulli
random variables as

Sk =
k∑

i=1

ζi, (6)

it follows that

E(Sk)= kp. (7)

The relative frequency Sk/k becomes and remains
close to p with probability one for sufficiently large k
as stated by [10]. Jakob Bernoulli, in his posthumous
book Ars Conjectandi (1713), published a theorem
[28] that formally describes this fact. Let ε be the
error tolerance and δ the confidence indicator. The
Bernoulli theorem states that, for every ε > 0 and
δ > 0, there is a number K such that, for k = K +
1, K +2, . . . ,

P

{∣∣∣∣ Sk

k
− p

∣∣∣∣ ≥ ε

}
> 1− δ, (8)

where P{w} means the probability ofw.
The particle transport simulation can be seen as
a Bernoulli trial [8, 9]. In this context, a general re-
sult of probability theory, known as Chebyshev’s
inequality [10, 28], can be used to determine the
number of samples needed to obtain estimates with
a certain error tolerance in a strip of width ε. This
inequality states that:

P{ζ ≥ ε} ≤ E(ζ)

ε
, ∀ε > 0. (9)

From Chebyshev’s inequality it can be shown [27]
that

P

{∣∣∣∣ Sk

k
− p

∣∣∣∣ ≥ ε

}
≤ pq

kε2
≤ 1

4kε2
. (10)
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Recall from probability theory that

P{|w|< ε} = 1− P{|w| ≥ ε}. (11)

Hence, we can rewrite the inequality given by (10) as

P

{∣∣∣∣ Sk

k
− p

∣∣∣∣< ε
}

≥ 1− 1

4kε2
. (12)

The confidence in an estimation is a given param-
eter (usually small). It measures the probability of
achieving a tolerable error. Theoretically δ is a posi-
tive number such that

δ≥ 1− P

{∣∣∣∣ Sk

k
− p

∣∣∣∣< ε
}
. (13)

Then, to satisfy the above inequality, it is required
that

δ≥ 1

4kε2
. (14)

Therefore, from Chebyshev’s inequality, the least
number of sampling experiments required to obtain
estimates with a confidence δ is given by

kc =
⌈

1

4ε2δ

⌉
. (15)

4.2 Applying the exponential Chebyshev
inequality to virtual spectrophotometry

The exponential Chebyshev inequality [27] can be
used to obtain a more precise bound for the num-
ber of sampling experiments than the bound derived
from the ordinary Chebyshev inequality described
in the previous section. Assuming w≥ 0 and ν > 0,
the “exponential form” of the Chebyshev inequality
states that

P{w≥ ε} = P{eνw ≥ eνε} ≤ E{eν(w−ε)}. (16)

From the exponential Chebyshev inequality it can be
shown [27] that

P

{∣∣∣∣ Sk

k
− p

∣∣∣∣ ≥ ε

}
≤ 2e−2kε2

. (17)

Using (11) it follows that

P

{∣∣∣∣ Sk

k
− p

∣∣∣∣< ε
}

≥ 1−2e−2kε2
. (18)

From reasoning similar to that used to obtain the in-
equality given by (14), it follows that

δ≥ 2e−2kε2
. (19)

Hence, from the exponential Chebyshev inequality,
the least number of sampling experiments need to
obtain estimates with a confidence δ is given by

ke =
⌈

ln(2/δ)

2ε2

⌉
. (20)

As mentioned by [27], using the theory of limits,
it is possible to compare the bound kc provided by
the ordinary Chebyshev inequality with the bound ke
provided by the exponential Chebyshev inequality:

lim
δ→0

kc(δ)

ke(δ)
= lim

δ→0

1

2δ ln(2/δ)
= ∞. (21)

It is clear from the previous expression that when
δ→ 0, ke is tighter than kc. In virtual spectropho-
tometric measurements oftentimes one needs rela-
tively low accuracy estimates, however. For exam-
ple, illuminating engineers need solutions accurate
to only 1–10%, as mentioned by [25], since humans
do not perceive finer variations of light.
This accuracy requirement is also valid for spec-
trophotometry aimed at rendering applications. Be-
fore analyzing this issue further, we describe how the
probability concepts presented so far fit into virtual
spectrophotometry.
We can think of a virtual spectrophotometric re-
flectance measurement as a Bernoulli trial, and the
sample rays as Bernoulli random variables. Viewed
in this context, the reflectance ρ, or the probability of
a sample ray being reflected to the upper hemisphere,
corresponds to p. Also, the total number of sample
rays N corresponds to k, and the number of rays m
reflected to the upper hemisphere corresponds to Sk.
Moreover, the uncertainty µ of the real spectropho-
tometer, whose readings we intend to compare the
virtual spectrophotometric measurements with, can
be associated with ε. Therefore, (12) and (18), and
the bounds derived from them, can be rewritten using
terms applied to virtual spectrophotometry.
For instance, (18) can be rewritten as

P
{∣∣∣m

N
−ρ

∣∣∣< µ}
≥ 1−2e−2Nµ2

, (22)

and the bound on the number of sample rays derived
from the exponential Chebyshev inequality can be
rewritten as

N =
⌈

ln(2/δ)

2µ2

⌉
. (23)

The figures presented in Table 1 show that, even
for relatively low accuracy measurements, the bound
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Table 1. Comparison of bounds on the number of sample rays
required to obtain estimates with a confidence given by δ and
µ= 0.005

δ ordinary Chebyshev exponential Chebyshev
log N log N

0.001 7.0 5.18
0.01 6.0 5.02
0.1 5.0 4.77

derived from the exponential Chebyshev inequal-
ity results in a number of sample rays considerably
smaller than the number given by the bound derived
from the ordinary Chebyshev inequality. Notice that
these figures are given in a logarithmic scale. In
Sect. 5 we present experiments that illustrate the ap-
plicability of the exponential Chebyshev bound in
virtual spectrophotometry, and highlight the signifi-
cant time savings that can be obtained from its appli-
cation.

5 Results and discussion

5.1 Experimental procedures

We used reflectance models with different levels of
complexity to illustrate the applicability of the pro-
posed bound (23) for the ray density under different
measurement conditions. The first model used in our
experiments corresponds to a simplified reflectance
model for dielectrics, similar to the one described by
[26]. It essentially consists of computing the Fres-
nel coefficient F, using Fresnel equations [18], when
a ray hits the specimen. This coefficient is compared
with a random number ξ uniformly distributed on the
interval [0, 1]. If F ≤ ξ , then the sample ray is re-
flected to the upper hemisphere. This model does not
account for wavelength dependency and uses the in-
dex of refraction, η, of the dielectric as parameter.
For the experiments with this model we used the re-
fractive index η= 2.419 of diamond [26].
We acknowledge the fact that this model increases
the variance of the estimand by converting a known
value to a probability. However, we again remind the
reader that the accuracy of any specific model is not
being evaluated here. Instead, we are interested in the
evaluation of the reliability of the measurement pro-
cedures which are not based on the previous knowl-
edge of the variance.

The second wavelength-dependent reflectance model
is controlled by a larger number of parameters. It cor-
responds to an algorithmic model of light propaga-
tion in foliar tissues, the ABM [3]. Its formulation as
well as the values assigned to its parameters, which
in our experiments correspond to a soybean leaf, are
described in [3]. Images of soybean leaves gener-
ated using foliar spectral data provided by this model
in three wavelengths (λ = 608 nm, λ = 551 nm and
λ = 465 nm) are shown in Fig. 6 of [5]. The wave-
length chosen for the experiments in this paper was
λ= 551 nm (the peak of human light sensitivity and
the peak of light absorption by chlorophyll, the main
foliar pigment, in the visible range).
The experiments performed to illustrate the applica-
bility of the proposed bound for the number of sam-
ple rays were divided into two sets. In the first set
we tested its application in virtual spectrophotome-
try aimed at the evaluation of reflectance models. As
mentioned earlier, this type of application involves
the comparison of virtual spectrophotometric mea-
surements with measurements obtained using a real
device. This implies that one should assign values for
the dimensions of the virtual device as close as pos-
sible to the values of the actual device. The values
used in our experiments (r1 = 8 mm, r2 = 12.5 mm
and D = 100 mm) correspond to values available in
the spectrophotometry literature [12, 23, 29].
In the second set of experiments we illustrate the
suitability of the proposed bound for applications in-
volving data generation from previously validated
reflectance models. For these experiments we sim-
ulate collimated rays, i.e., all sample rays used in
a given measurement for specified geometrical and
spectral conditions have the same origin and hit the
specimen at the same point. This type of application
usually involves a large number of measurement in-
stances, e.g., readings for polar angles of incidence,
θi , varying from 0◦ to 90◦ in intervals of 1◦. In order
to observe the average magnitude of the fluctuations
of the resulting curves we use the formula

∆=
∑n

i=1 |ρ(N j )

i −ρ(N j−1)

i |
n

, (24)

where ρ
(N j )

i and ρ
(N j−1)

i correspond to the current and
previous reflectance estimates obtained using the re-
spective ray densities, and n corresponds to the to-
tal number of directional-hemispherical reflectance
measurement instances.
The ray casting algorithm used by the virtual spec-
trophotometer described in this paper has a constant
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a b
Fig. 2a,b. Reflectance estimates provided by: a the simplified reflectance model for dielectrics (ηdiamond = 2.419); b the
algorithmic reflectance model for plant leaves (λ= 551 nm)

cost per ray, i.e., there is a linear relationship be-
tween N and the cost. Notice that the graphs pre-
sented in this section are not used to show this re-
lationship. Instead, they are presented to show that
by using the number of rays given by the proposed
bound (23) one can obtain asymptotically conver-
gent estimates. Furthermore, as mentioned earlier,
we represent the sample ray density by log10 N just
for the sake of compactness.
As mentioned above – see also [25] – an accu-
racy of 1% is satisfactory, i.e., δ = 0.01 for spec-
trophotometric measurements aimed at rendering ap-
plications. Also, according to data provided in the
spectrophotometry literature [21, 23, 29], the abso-
lute precision of actual spectrophotometers is around
0.995, which allows us to set µ = 0.005. Apply-
ing the proposed bound, the number of sample rays
required under these conditions is N = 105.02 (or
log N = 5.02).

5.2 Measurements of conical-hemispherical
reflectance

Figures 2–4 present conical-hemispherical reflectance
measurements for an incident direction given by
φi = 0◦ and θi = 70◦, and using different ray den-
sities. In order to increase our scope of evaluations,
we applied two different sampling strategies, random
and jittering-based, to select the sample points on the
disks of the virtual device.

We can obtain estimates within the region of asymp-
totic convergence using the number of rays pro-
vided by the proposed bound, i.e., N = 105.02 (or
log N = 5.02) as we can observe in the graphs pre-
sented in Fig. 2. On the other hand, we could obtain
estimates within the region of constant convergence
through the application of a brute-force approach,
e.g., using N = 108 (or log N = 8). The graphs pre-
sented in Fig. 3 show, however, that in this case we
would have a very significant increase in the process-
ing time required for the virtual spectrophotometric
measurements. This suggests that we can obtain esti-
mates with a higher reliability/cost ratio using a ray
density provided by a bound based on probability
theory (Sect. 4).
Moreover, by examining the figures presented in
Table 1 for δ = 0.01 and the graphs presented in
Fig. 4, we can also verify that the proposed bound,
derived from the exponential Chebyshev inequality,
allows us to obtain estimates with a higher reliabil-
ity/cost ratio than the bound derived from the or-
dinary Chebyshev inequaglity. The practical benefit
of using a tighter bound becomes even more no-
ticeable when one works with applications involving
a large number of virtual spectrophotometric mea-
surements. In this case, we can obtain highly sig-
nificant computational savings, in terms of the total
processing time, through the use of the ray density
provided the proposed bound. Our second set of ex-
periments illustrates this.
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3a 3b

4a 4b

Fig. 3a,b. Processing times (given by elapsed CPU time on an SGI R5000) associated with the virtual spectrophotometric
measurements for: a the simplified reflectance model for dielectrics; b the algorithmic reflectance model for plant leaves
Fig. 4a,b. Close-up of the curve of processing times associated with the measurements for: a the simplified reflectance
model for dielectrics; b the algorithmic reflectance model for plant leaves

5.3 Measurements of
directional-hemispherical reflectance

Figures 5 and 6 show the results of directional-
hemispherical reflectance measurements when
φi = 0◦ and θi ∈ [0◦, 90◦] is sampled at intervals
of 1◦. For applications involving a large number of
measurement instances, such as these, we need to se-
lect a ray density that allows minimal fluctuations
in the resulting curves. As we can see in Fig. 5,
for N = 103 (or log N = 3) we have very notice-

able fluctuations. As we increase the value of N , we
start to have smoother curves, and for N = 105 (or
log N = 5) the curves present negligible fluctuations.
We can reduce the fluctuations even more by in-
creasing the value of N , e.g., using N = 106 (or
log N = 6). The graph of the average magnitude of
fluctuations, computed using (24) and presented in
Fig. 6a, shows, however, that in this case we would
have only a minor reduction in the fluctuations for
both reflectance models. Moreover, the graph pre-
sented in Fig. 6b shows that in this case we would
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5a 5b

6a 6b

Fig. 5a,b. Directional-hemispherical reflectance measurements using two different ray densities for: a the simplified reflectance
model for dielectrics (ηdiamond = 2.419); b the algorithmic reflectance model for plant leaves (λ= 551 nm)
Fig. 6. a Average of fluctuations and b processing times (given by elapsed CPU time on an SGI R5000) associated with the
directional-hemispherical reflectance measurements for the two reflectance models used in our experiments

have a substantial increase in the processing time
(around 10 ×) for both reflectance models. These ob-
servations suggest that we can obtain results with
a reasonably high reliability/cost ratio using the ray
density given by the proposed bound (23) for appli-
cations of this type as well.

6 Conclusion
The reliability and efficiency of virtual spectropho-
tometers are directly determined by an appropriate

qualitative and quantitative selection of sample rays,
which is required to obtain estimates with a de-
sired accuracy under specified spectral and geomet-
rical conditions. The application of a brute-force ap-
proach to determine the ray density which may en-
sure results within the region of constant conver-
gence is highly inefficient. We therefore investigated
alternatives to obtain satisfactory bounds for the ray
density needed for a virtual spectrophotometer. Such
a bound should take into account the accuracy and
performance requirements of rendering applications.
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As a result of this investigation we proposed a bound
derived from the exponential Chebyshev inequal-
ity. This bound provides tighter ray densities than
previous probability theory results used in particle
transport formulations. The application of this in-
equality also does not require the pre-estimation of
variances usually required in the evaluation of ac-
curacy of Monte Carlo methods used in rendering
applications.
Experiments were performed using different sam-
pling strategies, random and stratified (jittering), and
models of reflectance with different levels of com-
plexity to illustrate the applicability of the proposed
bound. These experiments suggest that the proposed
bound allows us to obtain results with a reasonably
high reliability/cost ratio and show that the suitabil-
ity of the proposed bound becomes even more no-
ticeable for applications involving a large number of
measurement instances. In many cases the total com-
putation time can be reduced by several orders of
magnitude through the application of the proposed
bound.
The main purpose of this research was to con-
tribute to a better theoretical foundation for fun-
damental research required for biologically and
physically based rendering applications. However,
the techniques presented in this work can be ap-
plied to other areas demanding virtual spectropho-
tometric measurements such as remote sensing
and colorimetry. Viewed in this context, this work
seems to follow the guideline suggested by Green-
berg [16, 30]:

If computer graphics is to have a role in improving
the future of our civilization, the real value will be
in its application to science, engineering and de-
sign.

Our future efforts will be focus on the ray den-
sity analysis for virtual devices measuring the spa-
tial distribution of light, known as goniophotome-
ters. We also intend to investigate the applica-
tion of the exponential Chebyshev inequality to
other rendering problems involving particle trans-
port simulation such as the computation of form
factors [6].
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