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1. INTRODUCTION

Every year, search and rescue operations are employed éonsaverous lives all over the world. In order to achieve this
goal, the agencies responsible for these operations $trireduce the time to find people who are lost or in distresss iBh

a particularly challenging task, specially when the se&@gierformed on vast and complex environments such as opsanoc
waters, deserts, mountains, forests and flooded regionsudly involves visual screenings primarily performeddeysonnel
onboard low-flying aircrafts [1]. During long airborne selags, the performance of the human operators may degrade due
fatigue, which may result in vital target clues to be missgd [

The fundamental importance of reducing search time aneé#&sing the probability of successful rescues have motivate
the development of sophisticated airborne detection systxuipped with multispectral and hyperspectral sensws [3,

4]). Due to their real-time capabilities and relatively laast compared with other technologies, such as synthetiduap
radar [2], these systems have become essential tools farhsaad rescue operations at sea and on land [1, 3]. Instatied
aircrafts operating at relatively high altitudes, theyypde information that complements the visual screeningfopmed at
low altitudes, resulting in faster and more complete scewvermage [2].

Despite the significant advances in this area, however,ffaetee detection of human targets remains an open prablem
notably in environments composed of background matertedsacterized by spectral features that pose limited cstimvah
spectral signatures of human skin. Such limited contragtne@sult in false positives, or false alarms, during timigieal search
and rescue operations. These situations may hinder theesan survival of a lost individual, especially under acdecenvi-
ronmental conditions, since valuable time may be undulyleygal in their investigation. Accordingly, more comprehige
spectral differentiation techniques based on an expamusdrsl coverage are required to mitigate these situatindsmprove
the performance of current detection systems [5].

Recently, these efforts have led researchers to look faghtsin an area where similar issues have been extensiwaly s
ied, namely the remote sensing of vegetation. Since plamiesents a fundamental resource for all human and anifeal li
on the planet, many spectral differentiation technologege been proposed in this area, including more than 15Gatéye
indices [6]. These indices are formed from combinationspafcgral responses of plants to yield a single value that indi
cates their vigour and allows their differentiation fromrrewnding materials such as water and bare soil. Argualgybdst
known and widely employed vegetation index is tié)V' I (Normalized Difference Vegetation Index) [6]. It is basedtbe
characteristic patterns of vegetation reflectance in Msiind near-infrared regions of the light spectrum, beingmated as
(pnirR — PR)/(PNIR + PR), Wherepr andpy 1 correspond to the mean reflectance in the red (600-7@0and near-infrared
(700-1100nm) bands of interest, respectively [7].

In 2008, Nunez and Mendenhall [8] proposed an index for thieati@n of skin signatures inspired in tiéDV'I. This
index, termed Normalized Difference Skin Index and hentkfeferred to asv DS Is, employs reflectance) values captured



at two near-infrared wavelengths (11086 and 1400wm), being computed a&(1100) — p(1400))/(p(1100) 4+ p(1400)).
Later in 2009, Nuneet al. [9], proposed a modified version of this index, henceforfamed to agV DS Iy, in which the NIR
reflectances at 1100mn and 1400nm were replaced by NIR reflectances captured at 2080and 1580hm, respectively.

Since the indices proposed by Nuretzl. [8, 9] employ two NIR reflectance values, they can effectivddtect human
targets when the background materials have a light absorpiid reflection behaviour markedly distinct from the light
sorption and reflection behaviour of human skin in this ragibthe light [10]. Noteworthy examples include man-madé an
inorganic materials typically found in urban settings. fhare background materials, however, whose interactidtislight
canresult in spectral features similar to skin spectralies in a particular spectral range. These include métena material
combinations typically found in nature, which constitute focal point of this work. Hence, to reduce the possibdityalse
alarms in the search for human targets in complex naturat@mwents, it becomes necessary to use multiple probesiogve
relevant spectral regions in which skin signatures are athbly characteristic features.

In this report, we propose a multispectral index, henchfoeferred to as\/ SDI (Multispectral Skin Detection Index),
for the remote detection of human skin signatures basedismtbmise. More specifically, the proposed index takes into
account the distinct spectral trends of human skin in thieldgnd NIR regions (Figure 1) in which light absorptionlwiit the
cutaneous tissues is dominated by melanin and water, risgdg¢l1].

2. APPROACH AND MATERIALS

The proposed index employs reflectangevalues captured at four wavelengths, with two in the vesi@50nm and 650nm)
and two in NIR (1450:m and 1650wm) region, being computed as:
(650) — p(450)  p(1650) — p(1450)

o p
MSDL = 0 T p(a50) ~ p(1650) + p(1450)° @

In order to assess its effectiveness and compare it withxtstireg indices, we computé/.SDI, NDSIs and NDS Iy
values (Table 1) for skin specimens with distinct levels igipentation (Figure 1). We then computed their values féiedi
ent materials found in natural environments to determinetidr false alarms can occur based on the testing skin oetect
intervals depicted in Table 1. These computations are padd using actual measured reflectance values availabtadee
materials in the literature. Since these datasets werénalotghrough distinct data acquisition initiatives [12, 13, 15, 16],
one should expect variations in their respective measurenunditions. We note, however, that similar variations also
expected to occur during actual search and rescue opesation
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Fig. 1. Reflectance spectra for lightly and darkly pigmented skiecénens provided by Cooksey and Allen [12] and Jacquez
et al. [13, 14], respectively.



Skin Specimens MSDI NDSIg NDSIy
Lightly Pigmented 0.1815 0.7760 0.6776
Darkly Pigmented 0.1588 0.6875  0.5981

Table 1. ComputedM DSI, NDSIg, and N DSy values for a lightly and a darkly pigmented skin specimen sehcorre-
sponding reflectance spectra is provided in Figure 1.

3. RESULTS AND DISCUSSION

Initially, we compared the performance of the indices witbpect to natural materials whose reflectance profile isactenized
by the absence of prominent spectral features at the NIRlesgths of interest (Figure 2). As expected, since the refifee
of human skin is marked by noticeable features in this reffiigure 1), all computed index values (Table 2) were outide

corresponding skin detection interval (Table 1), suggestiat these indices can effectively differentiate theagenmals from
human targets.

N
1

S}
(=]
T

T T T
== Coastal Seawater
Open Ocean Water

[
o
T

[N
o
T

reflectance (%)

o
7

(=]

Il Il Il Il Il Il Il Il
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
wavelength (nm)

== Saudi Dune
Australian Dune

reflectance (%)

O Il Il Il Il Il Il Il Il Il Il
400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
wavelength (nm)

Fig. 2. Reflectance spectra for sample materials characterizéfietabsence of prominent features at the NIR wavelengths of
interest. Top: ocean water samples [15]. Bottom: desendjisand samples [16].

Sample Materials MSDI NDSIy NDSIy

Sand (Saudi Dune) 0.0206 -0.0068 -0.0381
Sand (Australian Dune) 0.0146 -0.0078 -0.0476
Coastal Seawater 0.0008 0.0104 0.0236
Open Ocean Water -0.0039 0.0104 0.0236

Table 2. ComputedM DSI, NDSIg, andN DSy values for samples of ocean water (from Atlantic Ocean) ] desert
sand (from Saudi and Australian dune field) [16].

In our next round of comparisons, we considered natural miadgevith a reflectance profile marked by the presence of
prominent spectral features at the NIR wavelengths of éstefFigure 3). Sincd/.SDI takes into account spectral features
in both visible and NIR regions, it provides values (TableoBjside its detection interval computed for the skin specim
considered in this work (Table 1). On the other, since shBS1g and N DSIy consider only spectral features in the NIR
region, they are more prone to result in false alarms whem#teral background is composed by materials whose spectral



signatures are characterized by spectral features simildrose found in the spectral signatures of human skin witihis
region. This can verified by th& DSIs and N DSy values depicted in boldface in Table 3, which are within i® S
andN DS g detection intervals computed for the skin specimens censdtlin this work (Table 1). We note that the computed
skin detection intervals presented in Table 1 should beeteas relative references since some variation should becteg
with respect to individuals characterized by more extremgenpntation levels. In addition, they can be further broabg
physiological changes, such as water loss and erythemaddu$ed by exposure to harmful environmental stimuli.
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Fig. 3. Reflectance spectra [15] for sample materials charaetbly the presence of prominent features at the NIR wavéiengt
of interest. Top: melting snow (slush) and water mixed widlyd1.67 g/L). Bottom: melting snow mixed with forest
vegetation (pinion pine) and fresh blue spruce needles.

Sample Materials MDSI NDSIy NDSIy
Melting Snow (Slush)  0.0001 0.6975  0.7232
Water & Clay 0.0000 0.6883  0.7540
Melting Snow & Pine  0.0086  0.6163 0.6403
Blue Spruce Needles  -0.0604 0.6811 0.6268

Table 3. ComputedM DSI, NDSIg, andN DS, values for samples of melting snow (slush), water mixed widty (1.67

g/ L), melting snow mixed with forest vegetation (pinion pinagdresh blue spruce needles. These samples were colldécted a
different locations across North America [15].

Although comprehensivim situ tests are required to fully asses the capabilities of dete@tdices under different oper-
ation conditions, the results of our investigation indéctitat the proposed index can mitigate the number of falsenaléhat
may occur in search and rescue operations in complex n&iowabnments. Hence, we believe that even though it regtiire
acquisition of reflectance values at four different wavgtas and within a spectral range broader than the usual rf@we
380-1100nm) covered by the most widely used detection systesg, (3, 4]), it can effectively contribute to the reduction of
search time, and thus increase the survival chances of tosare lost. Moreover, as pointed out by Eismahal. [5], such
systems were developed based on spectrometer hardwangetteaboth reliable and relatively inexpensive at the timsyth
were proposed. However, current hyperspectral technaogginues to evolve, and devices such as the InGaAs detatcays
can provide low-cost solutions for extending the spectakcage of existing detection systems up to 1#Z09[5]. Finally, as
appropriately stated by Leonagtlal. [1], since time is a critical factor, anything that can be eémreduce the search time and
lead to a successful rescue is of value for these operatioreslaat saving lives.
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