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1. INTRODUCTION

Every year, search and rescue operations are employed to save numerous lives all over the world. In order to achieve this

goal, the agencies responsible for these operations striveto reduce the time to find people who are lost or in distress. This is

a particularly challenging task, specially when the searchis performed on vast and complex environments such as open ocean

waters, deserts, mountains, forests and flooded regions. Itusually involves visual screenings primarily performed bypersonnel

onboard low-flying aircrafts [1]. During long airborne searches, the performance of the human operators may degrade dueto

fatigue, which may result in vital target clues to be missed [2].

The fundamental importance of reducing search time and increasing the probability of successful rescues have motivated

the development of sophisticated airborne detection systems equipped with multispectral and hyperspectral sensors (e.g., [3,

4]). Due to their real-time capabilities and relatively lowcost compared with other technologies, such as synthetic aperture

radar [2], these systems have become essential tools for search and rescue operations at sea and on land [1, 3]. Installedon

aircrafts operating at relatively high altitudes, they provide information that complements the visual screenings performed at

low altitudes, resulting in faster and more complete scene coverage [2].

Despite the significant advances in this area, however, the effective detection of human targets remains an open problem,

notably in environments composed of background materials characterized by spectral features that pose limited contrast with

spectral signatures of human skin. Such limited contrast may result in false positives, or false alarms, during time-critical search

and rescue operations. These situations may hinder the chances of survival of a lost individual, especially under adverse envi-

ronmental conditions, since valuable time may be unduly employed in their investigation. Accordingly, more comprehensive

spectral differentiation techniques based on an expanded spectral coverage are required to mitigate these situationsand improve

the performance of current detection systems [5].

Recently, these efforts have led researchers to look for insights in an area where similar issues have been extensively stud-

ied, namely the remote sensing of vegetation. Since plants represents a fundamental resource for all human and animal life

on the planet, many spectral differentiation technologieshave been proposed in this area, including more than 150 vegetation

indices [6]. These indices are formed from combinations of spectral responses of plants to yield a single value that indi-

cates their vigour and allows their differentiation from surrounding materials such as water and bare soil. Arguably the best

known and widely employed vegetation index is theNDV I (Normalized Difference Vegetation Index) [6]. It is based on the

characteristic patterns of vegetation reflectance in visible and near-infrared regions of the light spectrum, being computed as

(ρNIR − ρR)/(ρNIR + ρR), whereρR andρNIR correspond to the mean reflectance in the red (600-700nm) and near-infrared

(700-1100nm) bands of interest, respectively [7].

In 2008, Nunez and Mendenhall [8] proposed an index for the detection of skin signatures inspired in theNDV I. This

index, termed Normalized Difference Skin Index and henceforth referred to asNDSI8, employs reflectance (ρ) values captured
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at two near-infrared wavelengths (1100nm and 1400nm), being computed as(ρ(1100)− ρ(1400))/(ρ(1100) + ρ(1400)).

Later in 2009, Nunezet al. [9], proposed a modified version of this index, henceforth referred to asNDSI9, in which the NIR

reflectances at 1100nm and 1400nm were replaced by NIR reflectances captured at 1080nm and 1580nm, respectively.

Since the indices proposed by Nunezet al. [8, 9] employ two NIR reflectance values, they can effectively detect human

targets when the background materials have a light absorption and reflection behaviour markedly distinct from the lightab-

sorption and reflection behaviour of human skin in this region of the light [10]. Noteworthy examples include man-made and

inorganic materials typically found in urban settings. There are background materials, however, whose interactions with light

can result in spectral features similar to skin spectral features in a particular spectral range. These include materials and material

combinations typically found in nature, which constitute the focal point of this work. Hence, to reduce the possibilityof false

alarms in the search for human targets in complex natural environments, it becomes necessary to use multiple probes covering

relevant spectral regions in which skin signatures are marked by characteristic features.

In this report, we propose a multispectral index, henceforth referred to asMSDI (Multispectral Skin Detection Index),

for the remote detection of human skin signatures based on this premise. More specifically, the proposed index takes into

account the distinct spectral trends of human skin in the visible and NIR regions (Figure 1) in which light absorption within the

cutaneous tissues is dominated by melanin and water, respectively [11].

2. APPROACH AND MATERIALS

The proposed index employs reflectance (ρ) values captured at four wavelengths, with two in the visible (450nm and 650nm)

and two in NIR (1450nm and 1650nm) region, being computed as:

MSDI =
ρ(650)− ρ(450)

ρ(650) + ρ(450)
×

ρ(1650)− ρ(1450)

ρ(1650) + ρ(1450)
. (1)

In order to assess its effectiveness and compare it with the existing indices, we computeMSDI, NDSI8 andNDSI9

values (Table 1) for skin specimens with distinct levels of pigmentation (Figure 1). We then computed their values for differ-

ent materials found in natural environments to determine whether false alarms can occur based on the testing skin detection

intervals depicted in Table 1. These computations are performed using actual measured reflectance values available forthese

materials in the literature. Since these datasets were obtained through distinct data acquisition initiatives [12, 13, 14, 15, 16],

one should expect variations in their respective measurement conditions. We note, however, that similar variations are also

expected to occur during actual search and rescue operations.
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Fig. 1. Reflectance spectra for lightly and darkly pigmented skin specimens provided by Cooksey and Allen [12] and Jacquez
et al. [13, 14], respectively.
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Skin Specimens MSDI NDSI8 NDSI9
Lightly Pigmented 0.1815 0.7760 0.6776
Darkly Pigmented 0.1588 0.6875 0.5981

Table 1. ComputedMDSI, NDSI8, andNDSI9 values for a lightly and a darkly pigmented skin specimen whose corre-
sponding reflectance spectra is provided in Figure 1.

3. RESULTS AND DISCUSSION

Initially, we compared the performance of the indices with respect to natural materials whose reflectance profile is characterized

by the absence of prominent spectral features at the NIR wavelengths of interest (Figure 2). As expected, since the reflectance

of human skin is marked by noticeable features in this region(Figure 1), all computed index values (Table 2) were outsidetheir

corresponding skin detection interval (Table 1), suggesting that these indices can effectively differentiate these materials from

human targets.
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Fig. 2. Reflectance spectra for sample materials characterized bythe absence of prominent features at the NIR wavelengths of
interest. Top: ocean water samples [15]. Bottom: desert (dune) sand samples [16].

Sample Materials MSDI NDSI8 NDSI9
Sand (Saudi Dune) 0.0206 -0.0068 -0.0381
Sand (Australian Dune) 0.0146 -0.0078 -0.0476
Coastal Seawater 0.0008 0.0104 0.0236
Open Ocean Water -0.0039 0.0104 0.0236

Table 2. ComputedMDSI, NDSI8, andNDSI9 values for samples of ocean water (from Atlantic Ocean) [15]and desert
sand (from Saudi and Australian dune field) [16].

In our next round of comparisons, we considered natural materials with a reflectance profile marked by the presence of

prominent spectral features at the NIR wavelengths of interest (Figure 3). SinceMSDI takes into account spectral features

in both visible and NIR regions, it provides values (Table 3)outside its detection interval computed for the skin specimens

considered in this work (Table 1). On the other, since theNDSI8 andNDSI9 consider only spectral features in the NIR

region, they are more prone to result in false alarms when thenatural background is composed by materials whose spectral
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signatures are characterized by spectral features similarto those found in the spectral signatures of human skin within this

region. This can verified by theNDSI8 andNDSI9 values depicted in boldface in Table 3, which are within theNDSI8

andNDSI9 detection intervals computed for the skin specimens considered in this work (Table 1). We note that the computed

skin detection intervals presented in Table 1 should be viewed as relative references since some variation should be expected

with respect to individuals characterized by more extreme pigmentation levels. In addition, they can be further broaden by

physiological changes, such as water loss and erythema [11], caused by exposure to harmful environmental stimuli.
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Fig. 3. Reflectance spectra [15] for sample materials characterized by the presence of prominent features at the NIR wavelengths
of interest. Top: melting snow (slush) and water mixed with clay (1.67g/L). Bottom: melting snow mixed with forest
vegetation (pinion pine) and fresh blue spruce needles.

Sample Materials MDSI NDSI8 NDSI9
Melting Snow (Slush) 0.0001 0.6975 0.7232
Water & Clay 0.0000 0.6883 0.7540
Melting Snow & Pine 0.0086 0.6163 0.6403
Blue Spruce Needles -0.0604 0.6811 0.6268

Table 3. ComputedMDSI, NDSI8, andNDSI9 values for samples of melting snow (slush), water mixed withclay (1.67
g/L), melting snow mixed with forest vegetation (pinion pine) and fresh blue spruce needles. These samples were collected at
different locations across North America [15].

Although comprehensivein situ tests are required to fully asses the capabilities of detection indices under different oper-

ation conditions, the results of our investigation indicate that the proposed index can mitigate the number of false alarms that

may occur in search and rescue operations in complex naturalenvironments. Hence, we believe that even though it requires the

acquisition of reflectance values at four different wavelengths and within a spectral range broader than the usual range(e.g.,

380-1100nm) covered by the most widely used detection systems (e.g., [3, 4]), it can effectively contribute to the reduction of

search time, and thus increase the survival chances of thosewho are lost. Moreover, as pointed out by Eismannet al. [5], such

systems were developed based on spectrometer hardware thatwere both reliable and relatively inexpensive at the time they

were proposed. However, current hyperspectral technologycontinues to evolve, and devices such as the InGaAs detectorarrays

can provide low-cost solutions for extending the spectral coverage of existing detection systems up to 1700nm [5]. Finally, as

appropriately stated by Leonardet al. [1], since time is a critical factor, anything that can be done to reduce the search time and

lead to a successful rescue is of value for these operations aimed at saving lives.
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