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Abstract

Segmentation is a vital aspect of medical imaging. It aids in the visualization of medical data and

diagnostics of various dieses. This report presents an implementation of a level set approach for active

contour image segmentation. This method is originally developed by Osher and Sethian and then applied

to image segmentation by Malladi. No requirements about objects’ shape and allowance for very flexible

topology change are key advantages for this method.

1 Introduction

Segmentation is defined as partitioning portions of an
image. It adds structure to a raw image. In the case
of medicine, this can involve identifying which por-
tions of am image is the tumor, or separating white
matter from grey matter in a brain scan.

This report presents a simple implementation of
an active contour method using level sets and demon-
strate this method’s abilities. This report will present
the formulation of the level set method and issues in
numerically implementing the problem. It will then
follow with results of the implementation and close
with areas for further improvements.

2 The Level Set Method

The segmentation problem reduces to finding
curve(s) to enclose regions of interest. Intuitively, we
can model the curves directly using control points.
However, there are issues involved in updating the
control points. For example, if two separate closed
curves needed to merge into one, or one needs to split
into two, when would this merge/split take place?
How would an algorithm detect when to merge or
split? After this is detected, data structures for the
curve would then needed to be updated as well. If
control points are too close together, how should they
be merged? There are solutions to these difficulties
[4]. However, these issues can all be alleviated using
the level set method.

The level set method was first presented by Os-
her and Sethian for front propagation, being applied
to models of ocean waves and burning flames [4].
Malladi applied it for medical imaging purposes [3].
The idea behind the level set method is to imbed a
curve within a surface. In our case, we imbed a two-
dimensional curve within a three-dimensional surface.
To illustrate this point, Figure 1 shows how a circle
can be imbedded in a cone. By indirectly modelling
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Figure 1: Sketch illustrating a circle embedded within
a cone

curves in this way, the above mentioned problems of
splitting and merging curves are addressed without
the need to treat them as special cases. Figure 2
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shows how a curve can split into two by moving along
the surface of the level set. Using this idea, we can
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Figure 2: Sketch illustrating how one closed contour
embedded in a surface is related to two closed con-
tours on another level

morph the surface to achieve our desired topology at
a specific contour level.

2.1 Formulation

In this section, we will describe how the level set
method is formulated [3]. We define the segmenta-
tion boundary as part of a surface where the contour
level is 0, i.e., the zero level set. Let φ represent the
implicit surface such that

φ(x, t) = ±d

where x is a position in our domain (the image), t is
time, and d is the distance between position x and
the zero level set. The sign in front of d is positive
if x is outside zero level set. Otherwise, the sign
is negative. Note that the curve of interest is then
marked by positions where φ = 0.

To evolve φ over time, use the chain rule:

φt + φxxt + φyyt = 0

φt + (xt, yt) · ∇φ = 0.

Now, let (xt, yt) = n+s where n is the vector normal
to the front at point x and s is some arbitrary vector.
Note that since n and s are defined over the entire
domain of x, they are actually vector fields. The
above equation can then be written as

φt + (n + s) · ∇φ = 0

φt + n · ∇φ + s · ∇φ = 0

φt + Vn|∇φ| + s · ∇φ = 0 (1)

where Vn is some scalar [1]. The two values, Vn and s,
can be viewed as two independent forces that evolve
the surface. The scalar Vn will control how fast the
surface will move in the normal direction. The vec-
tor s will be another force that dictates both direc-
tion and speed of evolution. The partial differential
equation can then be solved when provided an ini-
tial condition, φ(x, t = 0). Thus, the segmentation
problem reduces to an initial value problem. This is
the formulation used in the implementation presented
within this report.

This formulation is to allow for a default expansion
or contraction of the level set when no features are
present in the image using Vn. When image details
are present, Vn can fall off towards 0, and the vector s

take over to lock the level set on to the actual edges.

A valid question is to why not use only one of the
forces? By using only Vn, the normal force may be
too great for weaker edges. To solve this, the effect of
Vn may be cut off early, shown in Figure 3. However,

 

Figure 3: Final result of a segmentation using only
normal force. The results are nice, but note the small
margin that this segmentation leaves.

this leaves a margin at the edges. When s is included,
the font well converge to the edges.

On the other hand, it is possible to generate a full
vector field that covers the entire domain and use only
that. Ma and Manjunath [2] describes one such im-
plementation. However, under such a scheme, a front
may stop evolving at a position that is equidistant
from two edges, a separatrix of the vector field. This
problem is seen in Figure 4. At such a position, either
edge seems like a viable option to evolve to, and the
front will stop moving. An even worse scenario exists
if the zero level set is influenced only by vectors of
only one edge; the entire set will collapse into that
edge. This may occur if the zero level set is close
to only one side of some shape in the image. The
solution to this problem is to introduce the normal
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Figure 4: Final result of a segmentation using only
vector field force. Note the upper edge of the seg-
mentation, unable to decide whether to move up or
down.

force.

3 Implementation

We can solve Equation 1 using finite difference on
a discrete spatial grid in the domain of x. Let
φ(x, n∆t) = φn

x
where ∆t is the time step. Then

for spatial grid node x = ij, φ can be calculated by

φn+1

ij − φn
ij

∆t
+ (Vn)ij |∇φn

ij | + sij · ∇φn
ij = 0

φn+1

ij = φn
ij − ∆t[(Vn)ij |∇φn

ij | + sij · ∇φn
ij ] (2)

where ∇φn
ij is calculated using a suitable finite differ-

ence scheme. The choice of a scheme is discussed in
Section 3.3.

3.1 Normal Speed and Vector Field

For default expansion, we implementation Vn and s

as

∇IG = (IG
x , IG

y )

Vn = exp(−α|∇IG|)

s = β∇|∇IG|

where IG is the input image blurred with a Gaus-
sian filter, α is a constant for controlling how fast Vn

approaches 0 when an edge is encountered in the im-
age and β is a constant for controlling the strength
of s. This requires 3 parameters: α, β and plus a σ,
the standard deviation of the Gaussian filter. We see
that when the input image has a small gradient (no

edges), Vn approaches 1 and s approaches 0. How-
ever, when nearing an edge, Vn will approach zero,
while s will point towards the edge. A larger α will
let Vn approach 0 at a faster rate. On the other hand
a smaller σ will preserve more details of the original
image, but might produce more ragged edges. Note
for default contraction, Vn is multiplied by -1. We
calculate these values using central difference:

(

IG
x

)

ij
=

IG
i+1,j − IG

i−1,j

2
(

IG
y

)

ij
=

IG
i,j+1 − IG

i,j−1

2

|∇IG|ij =
√

(IG
x )ij +

(

IG
y

)

ij

(Vn)ij = exp
(

−α|∇IG|
)

(|∇IG|x)ij =
|∇IG|i+1,j − |∇IG|i−1,j

2

(|∇IG|y)ij =
|∇IG|i,j+1 − |∇IG|i,j−1

2

sij = β((|∇IG|x)ij , (|∇IG|y)ij).

3.2 Entropy Condition

Consider

ut(x, t) = −a(x)ux(x, t) (3)

a(x) =

{

−1, x < 0

1, x > 0
.

The slope of the characteristic curves are

dt

dx
=

{

−1, x < 0

1, x > 0
.

A sketch of the characteristic curves are shown in Fig-
ure 5. Note the empty gap in the figure. In general,

t

x

Figure 5: Sketch showing characteristic curves with
a gap, implying non-unique solutions

there is no unique solution; different characteristic

3



curves can fill the gap [4]. However, an additional
condition, the entropy condition, can be added. Con-
sider the viscous non-linear wave equation:

ut(x, t) + u(x, t)ux(x, t) = εuxx(x, t)

Introducing the viscosity term, εuxx(x, t), converts
our equation from a hyperbolic into a parabolic type,
which ensures an unique solution. This term will in-
troduce a rarefaction of characteristics in the empty
gap, illustrated by Figure 6. We will discuss in Sec-

t

x

Figure 6: Sketch of characteristic curves with rarefac-
tion wave, implying unique solution

tion 3.3 as to how we will introduce this viscosity
term.

3.3 The Upwind Scheme

When implementing Equation 2, special attention
should be given to how ∇φn

ij is calculated. For sim-
plicity, we refer to the one-dimensional function u.
We have a few options to calculate its derivative:

D0
xui =

ui+1 − ui−1

2∆x

D+
x ui =

ui+1 − ui

∆x

D−

x ui =
ui − ui−1

∆x
.

These are know as central difference, forward differ-
ence, and backward difference respectively. Which
one should be we choose?

Consider the one-dimensional wave equation:

ut(x, t) + ux(x, t) = 0

u(x, 0) = f(x)

where the exact solution is u(x, t) = f(x − t) =
u(x − t, 0) and characteristic curves have slope 1.
Now, consider a point A on a characteristic curve
q. The value at A can be traced back along q to a

t

x
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Figure 7: Sketch of characteristic curves. Note B is
in the domain of dependence of A.

point, B, where t = 0 (See Figure 7). We can say B

is in the domain of dependence of A, i.e., A depends
on B. Note that information flows from the left to
the right.

Taking this into consideration, we should use an
approximation scheme that propagates information
in the corresponding direction. In the example used,
the information flows from the left to the right.
Therefore, we use backward difference. In general,
information can flow from the right as well; forward
difference may be needed.

To illustrate, recall Equation 3. Note that it has
characteristic curves of slope 1 and -1. To apply both
forward and backward difference, we solve it using the
following:

un+1

i − un
i

∆t
= −(max(ai, 0)D−

x un
i

+min(ai, 0)D+
x un

i )

or equivalently

un+1

i = un
i −

∆t

∆x

(ai

2
(un

i+1 − un
i−1)

−
|ai|

2
(un

i+1 − 2un
i + un

i−1)

)

(4)

where un
i = u(i, n) and ai = a(i). This approach

is known as the upwind scheme. Note the last term
on the right of Equation 4 is a second order term
that corresponds to the viscosity term mentioned in
Section 3.2 [1].

Returning to our original problem in two dimen-
sions, we can calculate s · ∇φ for every grid point
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as

s · ∇φ = s · (φx, φy)

= β(|∇IG|x, |∇IG|y) · (φx, φy)

= β[max(0, |∇IG|x)D−

x φ

+ min(0, |∇IG|x)D+
x φ

+ max(0, |∇IG|y)D−

y φ

+ min(0, |∇IG|y)D+
y φ].

We calculate Vn|∇φ| in a similar fashion:

Vn|∇φ| =
√

φ2
1 + φ2

2

where

φ1 = max(0, Vn)D−

x φ + min(0, Vn)D+
x φ

φ2 = max(0, Vn)D−

y φ + min(0, Vn)D+
y φ.

3.4 The CFL Condition

Note that we are using a discrete method to solve a
continuous problem. Courant, Friedrichs, and Lewy
noted that there is a necessary condition to preserve
stability when solving problems in this way. The con-
dition has since then been referred to as the Courant-
Friedrichs-Lewy(CFL) condition. They noted that
the numerical domain of dependence needs to include
the analytical domain of dependence. This idea is
shown in Figure 8. In our case, a level set may only

t

x

t

x

Figure 8: In both sketches, let the solid line represent
the analytical domain of dependence and the dashed
line be numerical domain of dependence. Note in
the left sketch, ∆t = 1 ∆t = 2 on the right. On
the left the numerical domain of dependence includes
the analytical domain of dependence, satisfying the
CFL condition. The CFL condition is violated on the
right.

evolve to an adjacent grid point [5, 6]. This is neces-
sary since each point is updated by only its neigh-
bouring points; information should not be moving

faster than one grid point per time step. To pre-
vent the appearance of instabilities, the timestep is
implemented as

∆t =
c

max{|Vn|} + max{|s|}

where 0 < c ≤ 1 is some scaling constant set by the
user.

4 Results

Here we provide some results of our implementation.
It was noted that the curve can split to two different
curves. This is shown in Figure 9. This example also
contracts the contour by default by setting the Vn to
be negative. An example of the contours merging is
shown is Figure 10. In Figure 11, we also see how
a contour can wrap around a region of non-interest.
Some error in the segmentation is also seen; a little bit
of the rig cage is included on the right of the contour.
For a more complex examples, the white matter being
segmented within a human brain is shown in Figures
12 and 13.

5 Possible Improvements

Currently, at each iteration of the algorithm, every
point within the domain is updated. However, the
final result is only interested in the zero level set.
Therefore, the current implementation is very ineffi-
cient. A way to improve efficiency is to evolve the
surface only on a narrow bad around the current zero
level set for the current iteration. This relieves the
needless computation on irrelevant parts of the do-
main. This is known as the narrow band scheme
[3, 6].

Another way to improve the current implementa-
tion is to expand to higher dimensions. Note that
the formulation of the level set method (Equation 1)
has no limit on the dimensions. Indeed, level sets has
been applied to three-dimensional data sets [5]. For
example level set approach is able to segment a tumor
within a three-dimensional model of a brain.

Additional forces and constraints can also be added
to refine the model. For example, a curvature force
can be included to prevent sharp corners from form-
ing [3]. Also, although no prior knowledge of the
image is required, it cam be useful. Referring to Fig-
ure 11, if knowledge of the ribs are used, we can set

5



    

Figure 9: Demonstration of a zero level set contracting and splitting. Temporal ordering is from left to right.
This image is an artificial image of two blocks.

    

Figure 10: Demonstration of zero level sets expanding and merging. Temporal ordering is from left to right.
This image is a medical scan of the chest, where the feet are pointed out of the viewing plane. The lungs
are being segmented.

    

Figure 11: Demonstration of a zero wrapping around a region of non-interest. Temporal ordering is from
left to right. This image is a medical scan of the chest, top-down view. A lung is being segmented. Note
that the segmentation also included a little bit of a ribs on the right.
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Figure 12: Demonstration of segmentation of white matter in a brain. Temporal ordering is from left to
right.

Figure 13: Demonstration of segmentation of white matter in a brain. Temporal ordering is from left to
right, top to bottom.
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a repelling force along the wall of the ribs to prevent
over-segmentation.

6 Conclusion

A simple and intuitive level set method has been im-
plemented. The results shown demonstrated the ver-
satility of the method by the complex shapes it has
extracted. The implementation has demonstrated
the method’s flexible topology adaptability and no
requirement of any knowledge of the target shape.
Despite its simplicity, it has generated some rather
nice results. However, there is room for improvement
but the capabilities and possibilities of this approach
have been clearly demonstrated.
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