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Abstract

Many scattering models have been proposed in the graphics literature. Few of them, however, have been evaluated through comparisons
with real measured data. Asthe demand for plausible and predictable scattering modelsincreases, more effort isfocused on performing such
comparisons, which require the use of measurement devices. Once the accuracy of a given model is determined, data can be extracted from
this model in several dimensions. In this paper we examine the formulation of virtual goniophotometric devices used to evaluate and extract
data from scattering models. We discuss implementation issues which affect the reliability of the readings provided by these devices. Our
discussion of theseissuesis supported by experiments whose results are al so presented in this paper.

1 Introduction

The group of measurements necessary to characterize both the color and surface finish of an object is called the measurement of appearance
of an object [14]. Thisgroup of measurementsinvolvesthe spectral energy distribution of propagated light, and the spatial energy distribution
of that light, measured in terms of bidirectional surface-scattering distribution function (BSSDF, or simply BDF). The changesin the spatial
distribution of the propagated light affect appearance characteristics such as gloss, reflection haze, transmission haze, luster and translucency.

Actual BDF measurementsare performed using goniophotometers[14, 16]. In this paper we discusscomputer simulations of these devices,
henceforth called virtual goniophotometers. The use of such devicesgives us control over the spectral data generation from computer models
used to simulate the scattering profile of various materials, and allows us to perform experiments at different sampling resolutions, which
are important requirementsin rendering. Besidestheir use in data collection, these devices can also be used to determine the plausibility of
scattering models.

When virtual measurement devices are discussed in the computer graphics literature they are usually presented in connection with a
scattering model. For example, Gondek et al. [11] have used adevicefor spectral and spatial measurements, avirtual goniospectrophotometer,
presented as an optics model and a capture dome used in conjunction with a geometric model of surface microstructure. Although our
discussion s related to applications involving algorithmic models, our main goa isto describe the formulation of virtual goniophotometers,
and to examine implementation issues (collector sphere subdivision and ray density) that affect the accuracy/cost ratio of the measurements,
without focusing on any specific model.

Theremainder of this paper is organized asfollows. In Section 2, we provide goniophotometric background information. In Section 3, we
highlight the main applications associated with this research, and present the general formulation of virtual goniophotometers. In Sections4
and 5, we discussissuesthat affect both the accuracy and efficiency of these virtual devices, namely the subdivision of the collector sphere
and the ray density of the measurements. This discussion is supported by experiments described in Section 6. Finally, in Section 7, we
summarize the main aspects of this research.

2 Goniophotometric Background

2.1 Spatial Light Distribution

The BDF has two components, namely the bidirectional reflectance distribution function (BRDF), f ., and the bidirectional transmittance
distribution function (BTDF), f:. Itisusually expressedin terms of the ratio between the spectral radiance propagated at apoint = of asurface
in the direction ¢» and the spectral radiant energy (per unit of area and per unit of time) incident from adirection ¢; at the point = of the
surface:

. — dL(.’l?,Z/J,)\) — fT’(x7¢i7¢7)‘) If 61 < 900
F@ i ) = 7o) 4, costi — { flogin ) it 6 > 00° &
where:
flz,¥i,9,X) = BDFof thesurfaceat z,
dL(z, ), \) = gpectrd radiance propagated at = and in adirection ¢,
Li(z, i, A) = gpectra incident radiance at =z and in adirection ¢ ;,
i = anglebetween the surface normal at = ; and the direction ¢;,
du; = differential solid angle at which L; arrives at =.

Animportant property of the BDF is its symmetry or reciprocity condition, which is based on Helmholtz Reciprocity Rule* [4]. Thisrule

1Theoriginal statement of Helmholtz Reciprocity Rule does not include non-specul ar reflection of any sort [4, 30]. Recently Veach [30] derived areciprocity
condition for general BDFs using Kirchhoff’slaws regarding radiative transfer [29].



states that the BDF for a particular point and incoming and outgoing directions remains the sameif these directions are exchanged. It alows,
for instance, the “forward” simulation of light rays traveling from a viewer to alight source, which is used by global illumination methods
[17, 25]. Quantitatively, this condition can be expressed as:

Fle iy, A) = fla, 0,4, A) @

Another important property of the BDFsisthat they must benormalized, i.e., conserve energy. This meansthat thetotal energy propagated
in responseto some irradiation must be no more than the energy received [10]. In other words, for any incoming direction the radiant power
propagated over the hemisphere can never be more than the incident radiant power [19]. Any radiant power that is not propagated is absorbed.
Formally, in the case of reflection of light, the so-called directional-hemispherical reflectance [1] should therefore be less than or at most
equal to 1:
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where:
fr(z,¢i,9,X) = BRDFof thesurfaceat =,
4 = angle between the surface normal and the outgoing direction ¢,
dd = differentia solid angle at which the radianceis reflected.

A similar relation given in terms of the directional-hemispherical transmittance [1] and the BTDF is used for the transmission of light.
BRDF and BTDF models, or simply BDF models, that are energy-conserving and reciprocal are considered physically plausible 2. Thisisa
crucial requirement for physically-based rendering frameworks aimed at global illumination applications.

2.2 General Characteristics of Actual Goniophotometers

A goniophotometer (from greek: gonio-photo-meter=angle-light-measuring) is defined as an instrument that measuresradiant flux (power) as
afunction of anglesof illumination and observation [7]. These measurementscan be performed in different ways, and, asaresult, there are
many possibleconfigurationsfor these devices. Computer graphicsresearchershave proposed extensionsfor industry made goniophotometers
[9] aswell as new designs based on the use of digital cameras[18, 31, 23]. A review of these devicesis beyond the scope of this work. A
reader interested in more detailed description of goniophotometers used in computer graphicsis referred to more comprehensive works in
thisarea[9, 24].

Goniophotometers are also important basic tools for fundamental research in colorimetry [22], solar engineering [8], plant biochemistry
[3, 15] and remote sensing [6, 15]. For instance, Figure 1 shows photographs of a goniophotometer used by Combes et al. [5] to measure
BDFs of plant specimens. The light flux which isincident on the specimen comes from an emitter. After being reflected or transmitted by
the specimen is captured by a detector (photometer). For BRDF measurementsthe detector(s) are placed in hemisphere above the specimen
(Figure 1a) and for BTDF measurementsthe detector(s) are placed in hemisphere below the specimen (Figure 1b).

Figure 1: Photographs of a goniophotometer showing different set-ups for: BRDF (left) and BTDF (right) measurements. (Courtesy of
Stephane Jacquemoud.)

To obtain a comprehensive goniophotometric record for a simple specimen would require a formidable number of measurements as
mentioned by Judd and Wyszecki [16]. Both the emitter and the photometer would have to be moved independently of one another to every
position on the hemisphere. In order to illustrate this aspect Judd and Wyszecki perform the following calculation. Supposethat one works
with afairly large solid angle of approximately 0.005 steradian for each aperture. To cover the entire hemisphere (2= steradian) as closely
as possible with such an aperture without overlapping, we must use about 1000 different positions. With both the source and the photometer
moved in each of the 1000 positions one ends up making 1 million measurements!

For many specimensthe most informative goniophotometric data are taken in the plane containing the direction of the incident light and
the normal of the specimen. Many actual goniophotometersare abridged to this extent. The emitter movement goesfrom 6 ; = 0° to 8; = 90°

2Lewis[20, 21] usesthe term “plausible’ to describe BDF models whose existence does not viol ate the laws of physics.



and the photometer movement rangesd; = 90° to 4, = —90°. Assuming the same aperture sizes as before, this abridged goniophotometric
record would contain 18 x 36 = 640 data points.

The best-designed, best-constructed and best-calibrated spectrophotometersstill yield resultsthat differ from one measurement to the next.
These differences, or uncertainties, are net results of combinations of many small fluctuations due to independent variations of different
componentsof the instrument, different factorsin the environment and how the specimen in handled.

3 Virtual Goniophotometry

3.1 Applications

Two applications of virtual measurements are especially relevant for biologically and physically-based rendering. The first application
corresponds to virtual measurements aimed at the testing and evaluation of BDF models through comparisons with actual measurements.
Obviously, these models can be verified against measurements of real materials. However, in order to obtain the readings from a computer
model in the first place, one must perform a computer simulation of the inputs and outputs of the model, i.e., use a virtual goniophotometer.
In this case, in order to minimize the introduction of bias in the comparisons, the formulation of this virtual device has to reproduce actual
measurement conditions asfaithfully aspossible.

The second application correspondsto data generation from previously validated computer models. This may involve a large number of
measurementswith respect to different wavelengths and illuminating geometries. Such data can sometimes be found in the literature where
actual measurementsfrom real materials are reported. However, more often it is not available, and, even when it is available, it isonly for a
restricted number of measurement configurations. The use virtua goniophotometersallows the removal of this restriction.

3.2 General Formulation of Virtual Goniophotometers

In order to simulate radiance measurements performed by placing the photometer at different viewing positions, one can use radiance detec-
tors, which are represented by the patches of a collector sphere placed around a specimen. Figure 2 presents a sketch showing the principal
components of avirtual goniophotometer and their geometrical arrangement. The light flux incident on the specimen comes from the emitter
through patch 7. The light flux viewed by the photometer is delimited by patch V. Both the direction of illumination and viewing can be
varied independently within the hemisphere above the specimen. The position of emitter and patch I is given by its azimuth angle ¢ ; and its
polar angle §;. The position of photometer and patch V' is given by its azimuthal angle ¢ ,» and its polar angle 4.

photometer

Figure 2: Sketch of avirtual goniophotometer.

Using this arrangement, the BRDF for a direction associated with a given radiance detector placed in the upper hemisphere can be de-
termined in terms of radiant power. More specificaly, it is given by the ratio between the radiant power reaching the detector, ® ", after
interacting with the specimen, and the incident radiant power, ¢ [12].

The corresponding expression used to compute the BRDF for light incident at wavelength A, considering the solid anglein the direction of
incidence, <7;, and the solid angle in the direction associated with the radiance detector, «°,, is given by:
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where:
Wy = projected solid angle regarding the direction associated with the radiance detector.
In turn, the projected solid angle w.¥ is given by:
p A, cosb,
We® = T (5)
where:
A, = areaof the radiance detector,
L = distance from the specimen to the radiance detector,
0, = anglebetween the direction associated with the radiance detector and the specimen normal.

Consider N rays shot towards the specimen for a given wavelength A, and assumethat each ray carriesthe same amount of radiant power,
. If thetota radiant power to be shot is ®;, then the radiant power carried by each ray is given by [25]:

Drey (1) = 2 ©)

Also, the radiant power reaching the radiance detector can be written as:
D"(A) = nrPray(A) ™

where:
ny = number of rays hitting a radiance detector.

Thus, replacing Equation 6 and Equation 7 in Equation 4, the expression to compute the BRDF reducesto:
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Similarly the BTDF is calculated assuming the radiance detectors are placed in the lower hemisphere.

For applicationsinvolving data generation from a previously validated model, the samplerays are usually collimated, i.e., the samplerays
have the same origin and hit the specimen at the same point. For applications involving comparisons with actual measurements the actual
measurement conditions must be reproduced asfaithfully as possible. In these situations the sample rays are distributed angularly according
to the geometrical arrangement of the surfaces used to represent the emitter and the specimen. As mentioned by Crowther [6], the incident
radiation from an emitter shows no preference for one angular region over the other. So, in order to simulate these measurement conditions,
the origins and targets of the rays are random points (or sample points) chosen on the surfaces used to represent the emitter and the specimen
respectively. Several sampling strategies can be used to select these sample points. In this paper we do not intend to determine the most
accurate or the most efficient sampling strategy. The merits and drawbacks of different sampling strategies have been adequately covered
elsewhere[10, 25, 27].

For the sake of completeness, we indicate a strategy that can be used in these applications, which is based on the classical Monte Carlo
stratified sampling [13] or jittered sampling [25]. It usesawarping transformation to guaranteethat the sample points are reasonably equidis-
tributed on adisk of radius R. Thistransformation is based on the following probability distribution function [26]:
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which enablesthe computation of the pair (z, y) through the following warping function [28]:
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where &, & € [—1,1]. Thiswarping function preservesfractional areaand is bicontinous, thusif ¢, and &> are randomly equidistributed the
function guaranteestheir points on the disk will aso be randomly equidistributed.

After generating the = and y coordinates of a sample point, the z coordinate is added. For a sample point on the specimen, z is equal to
zero, and, for asample point on the emitter, z will correspond to the distance D between the disks. Finally, to obtain the origin of a sample
ray, the corresponding sample point (, ¥, z) on the emitter shall be rotated according to a specified incidence geometry given by ¢ ; and 6;.

4 Collector Sphere Subdivision

4.1 Equal Angular Intervals

The simplest way to subdivide the collector sphere into patches is to use spherical coordinates, ¢ € [0,2x] and § € [0, I] (Figure 3),
sampled at equal angular intervals along both coordinate directions. In this case the resulting patcheswill not have the same area. Note that



the computation of the BDFs involves the computation of the projected solid angle (Equation 5) for each patch, which, in turn involvesthe
computation of the areaof the patch and the specification of the angle ..

Consider a patch given by the spherical coordinates (61,692) and (¢1,¢2) (Figure 3). Intuitively 6, should correspond to %
Note that in the computation of the projected solid angle we need to compute the cosé .. Our experiments (Figure 4) show that using
8, = cos(2recerPa)tarreo(92) ) gne can obtain more uniform results when the sphereis subdividedinto asmall number of patches. Asone
subdividesthe spherelnto alarger number of patches, the differences decrease, sinced . tendsto be same for both approaches.

Figure 3: Spherical coordinates used in the subdivision of the collector sphereinto patches.
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Figure 4: Difference between averaging in term of cos# and averaging in tems of 6.

4.2 Equal Solid Angles

Another approach that can be applied is the subdivision of the collector sphere into regions of equal solid angles, i.e, the patches on the
collector spherewill havethe same area. In this case the parameter spacerepresented by ¢ € [0, 27] will bedivided into equd intervalsasin
the previous case. The valuesfor the spherical coordinate § are chosen to guaranteeequal area patches.

Considering the geometry presented in Figure 5, the small triangle hasthe rel ationship:

fl—h = cosf (11
Ej
and the large the relationship:

% = sinf (12
and )

Lf = cosb (13
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Theintegral of the spherical segment between /1 and k- is therefore:

o o dh o
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cost

Hence, each dlice of the samethickness, (h 2 — hy ), hasthe same surface area around the slice.

Figure5: Geometry used to subdivide the collector sphereinto equal solid angle regions.

Considering the upper hemispheredivided into m . equal thickness slices, the angles¢: and 8- limiting agiven patch are given by:

6 = arccos(h—l) (16)
L
and .
hi +
6o = arccos(%) a7)

Theissuesraised in the previous section with respect to the choicefor ¢ . aso apply to this subdivision approach. In fact our experiments
(Section 6.1) show minor improvements in the accuracy of the measurements. The computation of the areas, however, can be done more
efficiently than in the previous case, since al patches have the same area. In the equa angular intervals technique the areas are not the same
for all patches, which resultsin more flops expended in their computation.

4.3 Equal Projected Solid Angles

The third approach examined in this paper subdividesthe collector sphereinto regions of equal projected solid angles. Like in the previous
cases, the parameter spacerepresented by ¢ € [0, 2x] isdivided into equal intervals. The valuesfor the spherical coordinate are computed
taking into account the definition of projected solid angles.

Consider the upper hemisphere above the specimen. Its projected solid angleis given by:

P=2m o=m/2
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Using the integration above, the projected solid angle of a dlice limited by 8, and 6, is given x[cos?§; — cos®#2]. Considering the
hemispheredivided into m . dices along the parameter space represented by 6, we can obtain the following rel ationship:

82 = arccosy | (cos?8; — L) (219
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In this approach the choiceof ¢, is embedded in the integration leading to the equal projected solid angles. As aresult, the computation of
the projected solid anglesis performed more accurately and efficiently. Moreover, our experiments (Section 6.1) show that the convergence
of the BDF valuesis uniform even considering a small number of patches, no matter their position.

5 Ray Density

Another key question to be addressed when performing virtual goniophotometric measurements is how many rays should be cast by the
emitter element, i.e,, how large should N be. Using a sufficiently large number of samplerays, onewill have ahigh probability of obtaining
estimates within the region of asymptotic convergence of the expect values of a BDF being measured. The computational costs, however,
grow linearly with respect to the total number of sample rays N since the implementation cost is constant per ray. The purpose of the
following analysisis, therefore, to determine a satisfactory bound for N such that we can obtain BDF estimates with a higher reliability/cost
ratio. In this context the term “ satisfactory” means taking into account the uncertainty of the actual goniophotometer whose readingswe are
comparing the measurementswith, and aiming at an error tolerance compatible within rendering requirements.

Baranoski et al. [2] have shown that the exponential Chebyshev inequality can be applied to obtain abound for the number of samplerays
required to obtain an asymptotically convergent value for the ratio Zx with respect to a single radiance detector ». In this case, it can be
shown [2] that:
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where:
P(w) = probability of w,
Dr = probability of aray hitting the radiance detector r,

€ error tolerance.

Theoretically the confidenced in aestimation is a positive number such that:
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Using the inequalities above, Baranoski et al. [2] showed that the bound on the number of sampleraysis given by:
In(%)
N = [ 5¢2 -‘ (23)

Theseinequalities can be generalized for m patches (or radiance detectors) asfollows:
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For large values of m, theinequality above reducesto:
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and the number of raysis given by:
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6 Experimental Evaluation

The experiments presented in this section addressissues directly associated with the accuracy and reliability of virtual goniophotometersin
general, i.e.,, we are not targeting the reproduction of measurementsperformed by a specific goniophotometer. Hence, we useavirtua device
whose collector sphere has unit radius and consider collimated incident beams in these experiments. For the sake of consistency we use the
same angle of incidence (45 °) in all experiments.

6.1 Sphere Subdivision Comparisons

In our evaluation of error propagation associated with subdivision techniquesdescribed in Section 4 (Figure 6), we consider a specimen with

perfect diffuse (Lambertian) reflective propertiesfor two reasons. First, its BRDF with respect to any directionisknown, i.e, f, = % which
is convenient for error computations. Second the cosine distributions of the reflected rays allow a better comparison of the error propagation

with respect to different collector patches.
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Figure 6: Subdivision techniques: equal angular intervals (Ieft), equal solid angles (center) and equal projected solid angles(right).

Figure 7 presents root-mean-sgquare (RMS) error[10] comparisons considering the three collector sphere subdivisions described earlier.
Although the RMS error is lower for experiments using the equal projected solid angle strategy, the differences decrease with an increasein
the number of rays as expected.
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Figure7: RMSerror comparisonswith respect to BRDF computation (collector sphereresolution: 30 x 30 patches) using the three subdivision
techniques examined in this paper.

It is worth noting, however, that the RMS is a global measure, i.e.,, low RMS error does not guarantee low error for individual patches.
The graphs presented in Figure 8 show the BRDF valuesfor three patches on a same plane (fixed ¢), top, middle and bottom (grazing angle).
As we can see, using the the equal projected solid angle strategy (Figure 8c), the BRDF values with respect to three patches converge more
uniformly to the actual value than using the other techniques (Figure 8aand 8b).
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Figure 8: BRDF vauesfor three different patches (collector sphere resolution 30 x 30 patches) using: equal angular intervals (left), equal
solid angles (center) and equal projected solid angles (right).

6.2 Ray Density Comparisons

For virtual goniophotometric measurements aimed at rendering applications one needs solutions accurate to only 1-10%, since humans do
not perceive finer variations of light, which, in turn, allow usto set § = 0.1. Also, according to data provided in the measurement literature
[9] the uncertainty of actual goniophotometersis around 0.5% or higher, which allow usto set e = 0.005. Using the proposed upper bound
presented in Section 5, the number of rays required to obtain asymptotically convergent readingsis given by N = m10 *°?, where m istotal
number of patches of the collector sphere. In all experiments presented in this section we apply the equal projected solid angles strategy to
subdivide the collector sphere.

We performed BRDF measurements for a diffuse material using a collector with three different resolutions, namely 10x10, 30x30 and
100x100 patches. Applying the proposed bound for the 10x10 resolution, one can expect asymptotically convergent readings using at most
107 rays. For the 30x30 resolution 10® rays are sufficient to obtain asymptotically convergent readings, while for the 100x100 resolution
one would need a larger number of rays. These aspects can be visually observed in Figure 9 which presents the profiles of these BRDF
measurements. Theseerror propagation trends can also be quantitatively verified through the RM S errors presented in Table 1.

Since a computer model is less predictable than measuring physical phenomena, it would be important to verify that the convergence of
the measurementsis not restricted to a single plane. Figure 10 presents BRDF measurements for the same diffuse material to illustrate this
aspect. Furthermore, it isworth noting that this trend is not restricted to lambertian models asillustrated in Figure 11, which presents BRDF
measurements with respect to amodel for glossy materials. In fact a Lambertian model was used in these experiments becauseit represents
the worst case sceneario in which the rays are evenly distributed among the patches.
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N=10°
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Figure 9: Profiles of BRDF measurementsfor adiffuse material taken on the plane given by the direction of the incident beam and the normal
of the specimen, and using different resolution for the collector sphere: 10x10 patches (top), 30x30 patches (middlie) and 100x100 patches

(bottom).
number of rays 10° 10° 107 10°
10x10 patches | 0.0091 | 0.0036 | 0.0009 | 0.0003
30x30 patches | 0.0301 | 0.0095 | 0.0030 | 0.0009
100x100 patches | 0.0995 | 0.0318 | 0.0101 | 0.0033

N=108

Table 1: RMS errors associated to BRDF measurementsfor a diffuse material considering three resolutions for the collector sphereand using
N=107

four ray densities.

i
Iy

]

(g
)
i

Ul

i
il
\m

Figure 10: BRDF measurementsfor a diffuse material obtained using a collector sphere subdivided into 30x30 patches and four different ray

densities.

Figure 11: BRDF measurementsfor a glossy material obtained using a collector sphere subdivided into 30x30 patches and four different ray

densities.
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For models simulating materials with a stronger specular behavior the number of rays required to obtain asymptotically convergent results
will be significantly smaller than the one provided by the proposed bound as illustrated in Figure 12. This aspect suggests that m in the
proposed bound could be replace by m  representing the number of patcheson the collector sphere within the specular lobe. This parameter,
however, is unknown a priori. In the extreme case of amirror-like BRDF, m’ is equal to one, i.e., N = 10°°® rays would be sufficient to
obtain asymptotically convergent results, which is correspondsto the number of rays required to obtain an asymptotically convergent value
for theratio 2 with respect to a single radiance detector.

N=10° N=106 N=107 N=108

Figure 12: BRDF measurementsfor aglossy material with a strong specular behavior obtained using a collector sphere subdivided into 30x30
patchesand four different ray densities.

7 Conclusion

In this paper we examined the formulation of virtual goniophotometric devices used to validate scattering models and to extract data from
previously validated models. Usually these devicesareimplemented using abrute force approachwhich consistsin shooting alarge number of
samplerays. Considering that many measurements are required in order to obtain a comprehensive goniophotometric for a single specimen,
our investigation was focused in the search for alternatives to raise the accuracy/cost ratio of these measurements. Our experiments have
suggest that the use a subdivision techniquesbased on equal project solid anglesmay reducemorerapidly the RM S errors of the computations.
They also show that the number of rays required to obtain asymptotically convergent readings has an upper bound that can be determined
using the exponential Chebyshev inequality and considering the number of patches of the virtua collector sphere.
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