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Abstract

Despite the ubiquity of sands in outdoor environments, little attention has been paid to the pre-

dictive rendering of this medium. In this thesis, we present a new spectral light transport model for

sand (SPLITS). The model simulates both the spectral and spatial (BRDF) responses of sand. Fur-

thermore, the parameters specifying the SPLITS model are based on the physical and mineralogical

properties of sand. The model is evaluated quantitatively, through comparisons with measured data.

Good spectral reconstructions were achieved for the reflectances of several real sand samples. The

model was also evaluated qualitatively, and compares well with descriptions found in the literature.

iii



Acknowledgements

First, I would like to thank my advisor, Gladimir Baranoski, for his wisdom, insight, and his

ability to see the way forward during periods of doubt. I would also like to thank my colleagues

from the Natural Phenomena Simulation Group: Aravind Krishnaswamy, Michael Lam, and Denise

Eng, as well as Ian Bell, my thesis readers Justin Wan and Peter Forsyth, and everyone else at the

University of Waterloo who contributed their time and insight. I am also grateful to my parents, Bill

and Gail, for their support in this endeavour. Finally, I would like to thank my wife, Erin, for her

assistance with AutoCAD™, and for her immeasurable love and support, without which this would

not have been possible.

This work is supported by the National Sciences and Engineering Council (NSERC Grant

213281) and the Canadian Foundation for Innovation (CFI Project 6218).

iv



Table of Contents

1 Introduction 1

2 Properties of Sand 5
2.1 What is Sand? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Factors Affecting Light Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Mineral Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Grain Size and Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 Additional Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Related Work 13
3.1 Geometric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Landscape Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Sand Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Reflection Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 General Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 Related Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Simulation of Specific Effects . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Optics 19
4.1 Conventions and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Birefringence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Mixed Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Generalization of Snell’s Law for an Absorbing Medium . . . . . . . . . . . . . . 22

4.5 Reflectance at a Plane Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



5 Data 25
5.1 Mineral Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1.1 Occurrence of Iron Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.1.2 Refractive Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Grain Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Particle Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Roundness and Sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.3 Coating Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Properties of a Sand Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.1 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.3 Water Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 The SPLITS Model 39
6.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Extended Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Pore Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.3 Particle Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.4 Particle Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.5 Particle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2.6 Shape and Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.3 Light Transport Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.1 Extended Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.2 Pore Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.3 Generating a Sand Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.4 Light Propagation Within a Sand Particle . . . . . . . . . . . . . . . . . . 56

6.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Formal Sand Particle Distributions 59
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.3 Abstract Particle Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.3.2 Fixed Particle Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3.3 Discrete Particle Distributions . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



7.3.4 Continuous Particle Distributions . . . . . . . . . . . . . . . . . . . . . . 66
7.3.5 Separability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3.6 Separating Size and Shape . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.3.7 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.3.8 Convex Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Concrete Particle Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.4.1 The Particle Distribution used in SPLITS . . . . . . . . . . . . . . . . . . 72
7.4.2 Other Particle Distributions . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.5 Computing the Traits of a Particle using Monte Carlo Methods . . . . . . . . . . . 77
7.5.1 Geometric Cross Section . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5.2 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Evaluation 79
8.1 Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Comparisons with Measured Data . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2.2 Results of Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.3 Qualitative Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9 Conclusion 87
9.1 Strengths and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A Generating a Point on a Spheroid 89
A.1 Prolate Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 Oblate Spheroid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Mixing Minerals 95
B.1 Density of a Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B.2 Converting Between Mass and Volume Fractions . . . . . . . . . . . . . . . . . . 96
B.3 Coated Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vii





List of Figures

1.1 Images of sand around the world. Top Left: Outside Natal, Brazil (courtesy of
Gladimir Baranoski). Top Right: A sand trap on a golf course (courtesy of Jan Tik).
Bottom Left: The Ubari sand sea in Libya (courtesy of Miles Hunter). Bottom Right:
A beach near Kyoto, Japan (courtesy of Chris Gladis). . . . . . . . . . . . . . . . 2

2.1 A photograph of sand showing a close up of sand grains. . . . . . . . . . . . . . . 6
2.2 The texture triangle depicting the percentages (by mass) of clay, silt and sand-sized

particles in the various soil textural classes [129]. . . . . . . . . . . . . . . . . . . 7
2.3 The shaded region indicates the permissible range for the relative proportions (by

mass) of the silt, clay, and sand-sized particles in sand [129]. . . . . . . . . . . . . 7
2.4 A demonstration of the effect caused by iron oxide contamination in quartz. The

dotted line in both plots represents the spectral reflectance of a pure quartz sam-
ple [22]. The dashed line represents the spectral reflectance of a pure iron oxide
sample. The solid line represents the spectral reflectance of an artificially prepared
mixture consisting of 98% (by mass) quartz and 2% iron oxide. Left: The iron ox-
ide is hematite [22]. Right: The iron oxide is goethite [22]. The spectral features of
hematite (respectively goethite) are clearly visible in the mixed samples. . . . . . 8

2.5 Projection of a sand grain onto a plane. The circles indicate measurements used in
the calculation of the Riley sphericity. . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Refraction at the interface between two media. . . . . . . . . . . . . . . . . . . . . 23

5.1 Complex refractive index of water. Top Left: Real part from 0.2 to 200 µm [45], Top
Right: Imaginary part from 0.2 to 200 µm [45], Bottom Left: Real part in the visible
region [67], Bottom Right: Imaginary part in the visible region [45]. . . . . . . . . 32

5.2 Refractive index of quartz [113, 139]. The extinction index of quartz is negligible
in the visible region [108]. Left: Separate ordinary and extraordinary ray refractive
indices over entire domain in which Equation (5.1) is valid. Right: Ordinary ray
refractive index restricted to the visible range. . . . . . . . . . . . . . . . . . . . . 33

ix



5.3 Complex refractive index of hematite [130]. Top Left: Real part, Top Right: Imag-
inary part, Bottom Left: Real part restricted to the visible range (weighted average
(Section 4.2) of the ordinary and extraordinary rays), Bottom Right: Imaginary part
restricted to the visible range (weighted average (Section 4.2) of the ordinary and
extraordinary rays). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4 Complex refractive index of limonite (goethite) [32]. Only the ordinary ray refrac-
tive index was provided. Top Left: Real part, Top Right: Imaginary part, Bottom
Left: Real part restricted to the visible range, Bottom Right: Imaginary part re-
stricted to the visible range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.5 Complex refractive index of magnetite [119]. Only the ordinary ray refractive index
was provided. Top Left: Real part, Top Right: Imaginary part, Bottom Left: Real
part restricted to the visible range, Bottom Right: Imaginary part restricted to the
visible range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.6 Complex refractive index of kaolinite [32]. Only the ordinary ray refractive index
was provided. Top Left: Real part, Top Right: Imaginary part, Bottom Left: Real
part restricted to the visible range, Bottom Right: Imaginary part restricted to the
visible range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1 Modeled sand medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 An example of the light propagation through a modeled sand particle. Left: The
particle consists of a core and an optional coating. The small box around the photon
path at the coating interface corresponds to the layer interface diagram to the right.
Right: A closer look at the modeled interface between the core, coating, and/or the
surrounding medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 Prolate spheroid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Flowchart outlining the light transport algorithm used by the SPLITS model. The
dashed line indicates the main loop. The term inner boundary refers to the inside of
either extended boundary, whereas the outer boundary is the outside of the surface
extended boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.5 Generating the next particle for the photon to interact with. Left: The distance to
the next particle, the sphericity, roundness, particle size, orientation, and the point
on the surface of the particle to be intercepted is generated randomly. Right: The
particle is positioned so that the ray intercepts the particle at the selected point. . . 53

6.6 Tests performed before accepting the generated sand particle. Left: A particle that
intersects an extended boundary is rejected. Middle: A particle that intersects the
previous leg of the path is rejected. Right: Otherwise, the particle is accepted. . . . 56

x



7.1 The bold blue line indicates the set of points that are exposed by the particle geom-
etry to the indicated vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Rays are cast toward the bounding sphere of a particle to determine its cross sec-
tional area using Monte Carlo [46] techniques. Left: The ray hits intersects the
particle. Right: The ray misses the particle. . . . . . . . . . . . . . . . . . . . . . 77

7.3 Points are selected randomly from within the bounding box of a particle to com-
pute its volume using Monte Carlo [46] techniques. Left: The point lies within the
particle. Right: The point is outside the particle. . . . . . . . . . . . . . . . . . . 78

8.1 Comparisons between real and simulated sand. The solid line indicates the re-
flectance of the sand sample. The dashed line indicates the modeled reflectance.
The parameters used and corresponding RMS errors are provided in Table 8.1. Top
Left: TEC #10019201, Top Right: TEC #10039240, Bottom Left: TEC #13j9823,
Bottom Right: TEC #19au9815. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.2 Images showing variation of sand colour with moisture as predicted by the model.
The degree of saturation varies from S = 0 at the top of each image to S = 1 at
the bottom. From left to right, the samples are TEC #10019201, TEC #10039240,
TEC #13j9823, and TEC #19au9815. . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Spectral reflectance curves predicted by the SPLITS model for two of the TEC
sand samples, varying the degree of saturation, S . Left: TEC #13j9823, Right:
TEC #19au9815. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.4 Qualitative behaviour of simulated sand. The solid line in each plot indicates the
spectral response from the SPLITS model with ϑhg = 0.01, rhg = 0.00, ϑm = 0.00,
ζ1 = 0.00, ζ2 = 0.10, ζ3 = 0.90, and µ ′

p = µ ′
m = µ ′

c = 1/3. Top Left: Varying ϑhg,
Top Right: Varying rhg, Bottom Left: Varying ϑm, Bottom Right: Varying the texture
(ζ1,ζ2,ζ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.5 Images showing variation of sand colour as various parameters are changed. The
image on the left (base image) corresponds to the solid lines in Figure 8.4. The
remaining images correspond to the spectral responses from the SPLITS model with
the same parameters as in the base image except, from left to right, ϑhg = 0.05,
rhg = 0.90, ϑm = 0.30, ζ3 = 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.6 BRDF of simulated sand. Profiles along the principal plane are shown on the left
(the dashed line indicates the incident direction). Three dimensional plots of the
BRDF are shown on the right. Top: Normal incidence, Middle: For light incident
30◦ from the normal, Bottom: For light incident 60◦ from the normal. . . . . . . . 85

8.7 Images demonstrating potential rendering applications of the SPLITS model to pro-
vide the spectral response for sands in various scenes. . . . . . . . . . . . . . . . 86

xi



A.1 The two types of spheroids, Left: Prolate, Right: Oblate. The bold, blue line denotes
the indicatrix (Equation (A.2)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

xii



List of Tables

2.1 Soil separates (particle size classes) defined by various agencies [17]. From Left to
Right: the United States Department of Agriculture (USDA), the International Soil
Science Society (ISSS), and the British Standards Institute (BSI). In this thesis, we
shall use the system developed by the USDA [129]. . . . . . . . . . . . . . . . . . 6

5.1 Summary of physical and optical properties of minerals found in sands. All densities
and chemical formulae are provided by Mottana et al. [90]. . . . . . . . . . . . . . 26

5.2 Constants used in Equation (5.1) to compute the ordinary and extraordinary ray
refractive indices of quartz [113, 139]. . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Geometric mean particle diameter (dg) and standard deviation (σg) for sands with
various mixtures of clay, silt and sand-sized particles. The parameters dg and σg are
listed for the entire soil and for each of the soil separates individually. The data is
provided by Shirazi et al. [123]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Roundness and sphericity statistics for sand-sized grains from sand samples col-
lected from various sites by Vepraskas and Cassel [143]. The average mean and
standard deviation across all five sites, and the union of the ranges, are used in the
SPLITS model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1 A summary of the model parameters, along with typical ranges and values used. . . 41
6.2 Mass fractions, µ j, of each of the different classes, j, of particles. The quantities βq

and βhg are unknowns, given by Equations (6.7) and (6.6) respectively. . . . . . . 45
6.3 Mass concentration, ϑ j,`, of the constituent minerals, `, in each of the different

classes j of particles. The quantities ϑ ′
k and ϑ ′′

k are unknowns given by Equations
(6.8) and (6.9) respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.1 Formulae used to compute geometric attenuation coefficients for particle distribu-
tions with fixed sized, randomly oriented shapes. Derivations for the surface areas
of the prolate and oblate ellipsoids are given in Appendix A. All other formulae are
provided by Zwillinger [151]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xiii



7.2 Formulae used to compute geometric attenuation coefficients for particle distribu-
tions with fixed size and orientation. The parameters α ′, β ′, and γ ′ are the incident
direction cosines with respect to the particle’s local x, y, and z axes (respectively).
The parameter θ = cos−1 γ ′ is the incident angle with respect to the particle’s lo-
cal z axis. The geometrical cross section for a spheroid is provided by Asano [2].
The remaining cross sections are special cases of Equation (7.24). All formulae for
volumes provided by Zwillinger [151]. . . . . . . . . . . . . . . . . . . . . . . . 76

8.1 The parameters used in the SPLITS model for each of the four sand samples, and
the root-mean-square error (RMSE) between the actual and simulated reflectances.
An RMSE smaller than 0.03 indicates a good spectral reconstruction [64]. . . . . . 82

xiv



List of Symbols

Ψ Riley sphericity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Di diameter of an inscribed circle . . . . . . . . . . . . . . . . . . . . . . . . . 10

Dc diameter of a circumscribed circle . . . . . . . . . . . . . . . . . . . . . . . 10

η complex refractive index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

n real part of the refractive index . . . . . . . . . . . . . . . . . . . . . . . . 20

k extinction index (imaginary part of the refractive index) . . . . . . . . . . . 20

κ absorption index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

α absorption coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

λ wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ηo ordinary ray complex refractive index . . . . . . . . . . . . . . . . . . . . . 21

ηe extraordinary ray complex refractive index . . . . . . . . . . . . . . . . . . 21

ε dielectric constant (square of the complex refractive index) . . . . . . . . . 21

νi volume fraction of the inclusions . . . . . . . . . . . . . . . . . . . . . . . 21

θi incident angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

θt transmitted angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

ni real refractive index of the incident medium . . . . . . . . . . . . . . . . . 22

nt real refractive index of the transmitted medium . . . . . . . . . . . . . . . . 22

θi polar angle of incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

θt polar angle of refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

θ ′
t real angle of refraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

R the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

rT E reflection coefficient for the transverse electric mode . . . . . . . . . . . . . 24

rT M reflection coefficient for the transverse magnetic mode . . . . . . . . . . . . 24

RT E reflectance at a plane surface for the transverse electric mode . . . . . . . . 24

rT M reflection coefficient for the transverse magnetic mode . . . . . . . . . . . . 24

R reflectance at a plane surface for unpolarized light . . . . . . . . . . . . . . 24

nw refractive index of water . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xv



nq refractive index of quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

I0 initial intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

A absorbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

dg geometric mean particle diameter . . . . . . . . . . . . . . . . . . . . . . . 29

σg standard deviation of the geometric mean particle diameter . . . . . . . . . 29

S degree of saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

ηh complex refractive index of hematite . . . . . . . . . . . . . . . . . . . . . 41

ηg complex refractive index of goethite . . . . . . . . . . . . . . . . . . . . . . 41

ηm complex refractive index of magnetite . . . . . . . . . . . . . . . . . . . . . 41

ηk complex refractive index of kaolinite . . . . . . . . . . . . . . . . . . . . . 41

γq density of quartz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

γh density of hematite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

γg density of goethite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

γm density of magnetite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

γk density of kaolinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ζ1 mass fraction of the clay separate . . . . . . . . . . . . . . . . . . . . . . . 41

ζ2 mass fraction of the silt separate . . . . . . . . . . . . . . . . . . . . . . . . 41

ζ3 mass fraction of the sand separate . . . . . . . . . . . . . . . . . . . . . . . 41

D depth of the sand medium . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

P porosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

w volumetric water content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

a semiminor axis (prolate spheroid) . . . . . . . . . . . . . . . . . . . . . . . 43

c semimajor axis (prolate spheroid) . . . . . . . . . . . . . . . . . . . . . . . 43

s particle size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

h coating thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

h′ coating thickness relative to the particle size . . . . . . . . . . . . . . . . . 43

n′ microfacet normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

n normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

X normally distributed random variable . . . . . . . . . . . . . . . . . . . . . 44

σ standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

R particle roundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

βq unknown mass fraction of pure quartz particles . . . . . . . . . . . . . . . . 45

βhg unknown mass fraction of pure hematite and goethite particles . . . . . . . . 45

µ j mass fraction of particle type j . . . . . . . . . . . . . . . . . . . . . . . . 45

ϑ ′
k unknown mass concentration of kaolinite in hematite coated quartz particles 45

xvi



ϑ ′′
k unknown mass concentration of kaolinite in goethite coated quartz particles . 45

ϑ j,` mass concentration of mineral ` within particles of type j . . . . . . . . . . 45

ϑh mass concentration of hematite . . . . . . . . . . . . . . . . . . . . . . . . 45

ϑg mass concentration of goethite . . . . . . . . . . . . . . . . . . . . . . . . . 45

ϑm mass concentration of magnetite . . . . . . . . . . . . . . . . . . . . . . . . 45

ϑFe mass concentration of iron oxides . . . . . . . . . . . . . . . . . . . . . . . 45

ϑhg mass concentration of hematite and goethite . . . . . . . . . . . . . . . . . 46

rhg ratio denoting the relative mass concentrations of hematite and goethite . . . 46

µ ′
p mass fraction of pure particles . . . . . . . . . . . . . . . . . . . . . . . . . 46

µ ′
m mass fraction of mixed particles . . . . . . . . . . . . . . . . . . . . . . . . 46

µ ′
c mass fraction of coated particles . . . . . . . . . . . . . . . . . . . . . . . . 46

νcoat volume fraction of coating for a coated particle . . . . . . . . . . . . . . . . 47

AS surface area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

AV surface area to volume ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 48

γ j density of a particle of type j . . . . . . . . . . . . . . . . . . . . . . . . . 48

γ` density of the mineral ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

γ particle density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

ν j,` volume concentration of the mineral ` within particles of type j . . . . . . . 49

ν j volume fraction of particles of type j . . . . . . . . . . . . . . . . . . . . . 49

fg log-normal particle size distribution defined by Shirazi et al. [123] . . . . . 49

ag base 10 logarithm of the geometric mean particle diameter . . . . . . . . . . 49

bg base 10 logarithm of the standard deviation of the geometric mean particle
diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Fm mass fraction of particles within a given size range . . . . . . . . . . . . . . 50

Φ normal cumulative density function . . . . . . . . . . . . . . . . . . . . . . 50

K geometric attenuation coefficient . . . . . . . . . . . . . . . . . . . . . . . 54

d j path length to the nearest particle of type j . . . . . . . . . . . . . . . . . . 54

ξ canonical random variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Φ′ normal probability density function . . . . . . . . . . . . . . . . . . . . . . 54

fX probability density function for the random variable X . . . . . . . . . . . . 54

d path length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

r reflected vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

t transmitted vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

T transmittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

FX cumulative density function for the random variable X . . . . . . . . . . . . 60

xvii



Pr probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
x a particle geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
(X,N) a particle distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
X a set of particle geometries . . . . . . . . . . . . . . . . . . . . . . . . . . 63
N number of particles per unit volume . . . . . . . . . . . . . . . . . . . . . . 63
2X the set of subsets of X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
f : A → B f is a function mapping A to B (i.e., b = f (a), were a ∈ A and b ∈ B) . . . . 63
∅ the empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
n derivative of the number of particles per unit volume . . . . . . . . . . . . . 63
r(t) a ray p+ tv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Ex,v set of points exposed (Definition 7.3.4) by the geometry x to the vector v . . 64
Ct region in which a particle centered within would intersect the ray r at r(t) . . 64
C(0,t0) region in which a particle centered within would intersect the ray r between

r(0) and r(t0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
M subset of an infinite medium . . . . . . . . . . . . . . . . . . . . . . . . . . 65
|X| cardinality (size) of the set X . . . . . . . . . . . . . . . . . . . . . . . . . 66
N j number of particles per unit volume with geometry x j . . . . . . . . . . . . 66
A×B Cartesian product of the sets A and B (i.e., the set of pairs (a,b) with a ∈ A

and b ∈ B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
R

+ the positive real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Fv fraction of volume occupied by particles within a given size range . . . . . . 69
fv derivative of Fv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ν total fraction of volume occupied by particles . . . . . . . . . . . . . . . . . 69
fn number density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
ω direction vector in three dimensional space . . . . . . . . . . . . . . . . . . 70
S the unit sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
G mean geometric cross sectional area (taken over all directions ω ∈ S) . . . . 70
C the unit circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
M mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xviii



Chapter 1

Introduction

Sand is found in a variety of outdoor scenes such as beaches, deserts, golf courses, and even in

a child’s sandbox. In computer graphics, however, little attention has been paid to the predictive

rendering of sand. Usually, a diffuse reflection model is assumed and texture mapping [51] or bump

mapping [14] is used to apply spatial variation [102]. The colour is then painstakingly tweaked by

an artist to yield a believable result. There is clearly room for improvement in the rendering of this

widespread (Figure 1.1), yet under appreciated, material.

In this thesis, we present a spectral light transport model for sand, hereafter referred to as

SPLITS. Although much has been published in the computer graphics and remote sensing litera-

tures on the topic of sand, these previous research efforts have emphasized the mechanical aspects

of sand [88, 103] or the simulation of particular effects, such as wetness [65] or surface rough-

ness [21]. A more thorough synopsis of related work is given in Chapter 3. SPLITS represents,

to the best of our knowledge, the first attempt to simulate the spectral reflection properties of sand

using its physical and mineralogical properties, henceforth referred to as characterization data, as

input.

There are several reasons for modeling sand in terms of its characterization data rather than in

terms of arbitrary parameters not directly relating to sand. For computer graphics, it is important

that the parameters make intuitive sense, and that one can predict the consequences of modifying

1



2 Chapter 1. Introduction

Figure 1.1: Images of sand around the world. Top Left: Outside Natal, Brazil (courtesy of Gladimir
Baranoski). Top Right: A sand trap on a golf course (courtesy of Jan Tik).∗ Bottom Left: The Ubari
sand sea in Libya (courtesy of Miles Hunter).† Bottom Right: A beach near Kyoto, Japan (courtesy
of Chris Gladis).‡

a particular parameter [1, 8]. The animator’s task of selecting an appropriate colour and reflec-

tion properties may then be automated to a large extent, by eliminating much of the trial and error

involved. Hyperspectral remote sensing with satellite or aircraft based equipment is used to inves-

tigate properties of land surfaces without having to physically survey the area [64, 126]. For other

worlds, such as Mars, a field survey may not be possible. In this case, spectral signatures may be

the only clue available for determining surface characteristics [89, 127]. For these scientific appli-

cations, this relationship between model parameters and the physical properties is necessary so that

sand characterization data may be obtained by inverting the model. Finally, for the model to be
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evaluated objectively, the parameters must relate to the material that one is trying to simulate.

The main results of this thesis are

• The SPLITS model is, to the best of our knowledge, the first comprehensive spectral light

transport model for sand, using an extensive set of sand characterization data as input and

yielding both the spectral and the spatial responses (the measurement of appearance). The

model compares well with measured data and with phenomena observed in the literature.

• Usually, the simulation of light transport in natural materials is performed under the assump-

tion that such materials may be represented using layers and that the directional changes of

travelling photons can be modeled using precomputed phase functions§ [47, 63, 71, 110, 133].

In this thesis, we suggest an alternative approach in which these directional changes are com-

puted on the fly, but without explicitly storing the material constituents. This approach strikes

a balance between the use of precomputed phase functions, which do not relate to any par-

ticular material, and a conventional ray tracing approach, which, among other difficulties,

requires much storage space. Although in the context of this thesis the focus is on sand, this

approach can potentially be applied to other materials such as plant or human tissues.

• A recurring theme throughout this thesis is the difficulty in obtaining adequate data. These

difficulties are seen in two contexts, both in terms of spectral data for the mineral constituents

used in the SPLITS model (Chapter 5) and in terms of the measurement data used to evaluate

the model (Chapter 8). Despite the efforts of numerous researchers, much work still needs to

be done to obtain spectral and scattering measurements for natural materials along with the

data characterizing those particular samples, so that they may be used to evaluate proposed

models in an accurate and objective fashion.

∗Cropped from “Discouragement” by Jan Tik (http://www.flickr.com/photos/jantik/6055252/), licensed
under Creative Commons (Attribution 2.0, http://creativecommons.org/licenses/by/2.0/).

†“Ubari sand sea” by Miles Hunter (http://www.flickr.com/photos/milesh/72387927/), licensed under Cre-
ative Commons (Attribution-NonCommercial 2.0, http://creativecommons.org/licenses/by-nc/2.0/).

‡“The Beach 02” by Chris Gladis (http://www.flickr.com/photos/mshades/39696839/), licensed under Cre-
ative Commons (Attribution 2.0, http://creativecommons.org/licenses/by/2.0/).

§A phase function describes the angular distribution of scattered light relative to the incident direction after a single
scattering event or after multiple scattering events [142].
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The remainder of this thesis is organized as follows. Background information about sand is

given in the next chapter. In Chapter 3, previous work relating to sand in the computer graphics

and remote sensing literatures is outlined. Relevant optics issues are discussed in Chapter 4. The

data required to implement the model is provided in Chapter 5. A general description of the model

is provided in Chapter 6, and key mathematical concepts used in its algorithmic formulation are

derived in Chapter 7. The evaluation approach and the results are discussed in Chapter 8. We

conclude and outline directions for future work in Chapter 9.



Chapter 2

Properties of Sand

In this chapter, the relevant background information on sand is provided. We begin by defining

precisely what sand is. The pertinent factors affecting light transport with sand are then described.

The following, however, is not a complete treatise on sand. Interested readers are referred to works

by Pettijohn et al. [107], Brady [17], or Gerrard [41].

2.1 What is Sand?

Sand is a particular type of soil. Soil is composed of particles of weathered rock and sometimes

organic matter immersed in a medium of air and water (the pore space) [41]. Figure 2.1 shows a

close up view of sand grains.

Soils are classified according to the size distribution of the mineral particles [17]. This is ac-

complished first by assigning individual particles to classes, called soil separates, according to their

size. The relative masses of each of the soil separates are then compared to determine the texture of

a soil sample, not to be confused with texture mapping [51].

Various agencies have differing definitions for soil separates and textural classes [17]. In this

work, we use the system developed by the United States Department of Agriculture (USDA) [129].

The USDA defines three soil separates, called sand, silt, and clay, as delineated in Table 2.1.

5



6 Chapter 2. Properties of Sand

Figure 2.1: A photograph of sand showing a close up of sand grains.

USDA ISSS BSI
Separate Min. Max. Min. Max. Min. Max.
sand 0.05 2.0 0.02 2.0 0.06 2.0
silt 0.002 0.05 0.002 0.02 0.002 0.06
clay - 0.002 - 0.002 - 0.002

Table 2.1: Soil separates (particle size classes) defined by various agencies [17]. From Left to Right:
the United States Department of Agriculture (USDA), the International Soil Science Society (ISSS),
and the British Standards Institute (BSI). In this thesis, we shall use the system developed by the
USDA [129].

Particles larger than 2mm are classified as rock fragments and are not considered to be part of

the soil. Figure 2.2 graphically depicts the textural classes defined by the USDA [129]. A sand

textured soil contains at least 85% sand-sized particles. Figure 2.3 shows the range for the relative

proportions of clay, silt and sand-sized particles in sand.

That the term sand is used to describe both a soil separate and a soil texture may be a source

of confusion. In the remainder of this thesis, the term sand is used to refer to a soil texture unless

otherwise stated (for instance, by referring to sand-sized particles).
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Figure 2.4: A demonstration of the effect caused by iron oxide contamination in quartz. The dotted
line in both plots represents the spectral reflectance of a pure quartz sample [22]. The dashed line
represents the spectral reflectance of a pure iron oxide sample. The solid line represents the spectral
reflectance of an artificially prepared mixture consisting of 98% (by mass) quartz and 2% iron oxide.
Left: The iron oxide is hematite [22]. Right: The iron oxide is goethite [22]. The spectral features
of hematite (respectively goethite) are clearly visible in the mixed samples.

2.2 Factors Affecting Light Transport

The reflectance of sand generally increases with wavelength [26]. Additionally, sand reflection is

non-Lambertian [98, 25]. In particular, sand exhibits retro-reflection [25], which is reflection in the

direction toward the source of illumination. Sand also reflects light in the forward direction, peaking

at an larger angle to the normal than that of the direction of specular reflection [25].

The most important factors contributing to the reflectance of soils in the visible range are its

mineral composition (and iron oxides in particular), moisture, and particle size and shape [11].

2.2.1 Mineral Composition

As sand is composed primarily of weathered rock [107], the optical properties of that rock may

influence light transport within sand. The parent material is the rock that is the source of the

mineral part of the sand. This is typically a silicate mineral [17] such as quartz, gypsum or calcite,

with quartz being the most common [17, 77]. While these minerals are colourless in pure form, trace

amounts of contaminants may substantially affect their colour [55], as demonstrated in Figure 2.4.
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Iron oxide gives sand its distinctive hues. Indeed, the two most significant minerals that de-

termine soil colour, hematite and goethite [36], are iron oxides. Goethite, also known as yellow

ochre [36] or limonite [90], is one of the most common minerals found in soils [36]. It colours soils

yellow to brown [138]. Hematite, or red ochre [36], imparts a red colour to soils and may mask

the colour of goethite except when in small quantities [138]. Hematite is usually found in tropical

regions and is rare in temperate or cool climates [24]. Iron oxides may be present as contaminants

in the parent material [90]. They are also found, typically within a kaolinite or illite matrix, as

coatings, approximately 1–5 µm thick, that form on the grains during aeolian∗ transport [149].

Additionally, magnetite and ilmenite are often found in beach and river sands [56]. These

minerals are spectrally very similar. They are opaque and are black in colour [56].

2.2.2 Water

The presence of water darkens sand. The principal reason for this is that the reduced contrast

between the refractive index of the pore space and that of the mineral particles (typically quartz)

induces stronger forward scattering at particle interfaces [140, 76]. In addition, water will tend to

adhere to solid particles in the soil due to a phenomenon called hydrogen bonding [17]. Internal

reflections at the air-water interface may trap light within this film of water [11].

2.2.3 Grain Size and Shape

Grain size affects reflectance by influencing the number of scattering interfaces per unit distance

through the medium [145]. Smaller particles, and thus a higher density of scattering interfaces,

result in higher reflectances [11, 77].

Grain shape may also affect scattering properties [11]. The shape of the grain is described by

two quantities: sphericity and roundness. Sphericity refers to the general shape of a particle by

expressing its similarity to that of a sphere [146]. In this thesis, we use the sphericity measure

proposed by Riley [114], which is a projection sphericity measure, meaning its definition is based

∗Aeolian means “by wind.”
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Figure 2.5: Projection of a sand grain onto a plane. The circles indicate measurements used in the
calculation of the Riley sphericity.

on the projection of the particle onto a plane. The Riley sphericity, Ψ, of a particle is given by

Ψ =

√

Di

Dc
, (2.1)

where Di is the diameter of the largest inscribed circle and Dc is the diameter of the smallest cir-

cumscribed circle, as shown in Figure 2.5.

In contrast, roundness can loosely be described as a measure of detail in the features on the grain

surface [146]. A higher roundness value indicates a smoother surface. Roundness is determined by

comparing the particle to images on a roundness chart [74].

2.2.4 Additional Factors

There are several other factors that may effect the reflectance of soils. The following factors, how-

ever, either show themselves primarily outside the visible region of the spectrum, are less applicable

to sands than to finer soils, or affect reflectance indirectly.

Organic matter, or humus, consists of decomposed plant and animal remains [17]. It is a black

substance that tends to darken soils [11]. In addition, concentrations of organic matter higher than

approximately 2% mask the effects of iron oxide [11, 40]. Sandy soils, however, typically have

lower concentrations of organic matter than other types of soils [17, 38].
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The total negative charge density at the surface, known as the cation exchange capacity (CEC)

[41], is highly correlated with reflectance in the infrared region [11]. However, its effects are likely

indirect, since the CEC also correlates well with other factors that are known to influence soil

reflectance characteristics, such as organic matter content [11].

Surface roughness plays an important role in effecting the reflectance of soils [84]. Individual

soil particles may aggregate into clods, forming a rough surface [17]. This is not so important for

sand, however, as sandy soils are less cohesive than finer soils [107].

Human activity indirectly affects soil reflectance. Matthias et al. [84] demonstrated that dif-

ferent tillage instruments have varying effects on soil reflectance. Tillage breaks up aggregates,

which affects surface roughness. It also facilitates incorporation of organic matter. Transportation,

by vehicle or on foot, compacts soil. This smooths the soil surface and also makes it impenetrable

to water or plant roots [17]. The resulting decrease in water and organic matter content, as well as

surface roughness, will increase reflectance.





Chapter 3

Related Work

Research into sands and soils in the computer graphics and remote sensing literatures is extensive.

These efforts fall into two broad categories. Geometric modeling aspects, such as landscape gener-

ation and displacement, have received much attention from the computer graphics community. In

contrast, appearance models for sand have been relatively scarce in the computer graphics literature.

We will, in this chapter, also discuss some general purpose reflection models that may be applied

to sand and models related to sand. Premǒze [111] provides a survey of additional light transport

methods. Finally, we shall discuss several models that deal with specific effects applicable to sand,

such as moisture.

3.1 Geometric Models

The following are methods for representing the shape and movement of sand. The model for repre-

senting the geometry of a sand surface is independent from the model proposed in this thesis, and

this summary is included for completeness.

The geometric models may be further subdivided into two families: landscape development

methods and models for simulating the displacement caused by the impact of another object.

13
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3.1.1 Landscape Formation

Numerous models exist for simulating the formation of sand dunes and dune fields. These tech-

niques generally model the dune field as a height map and simulate aeolian transport by reducing

the height at one cell and increasing the height at another cell downwind correspondingly. This

process is repeated many times. Examples of such models include those proposed by Momiji [88]

and by Nishimori and Ouchi [96]. A more extensive summary of dune field simulation methods is

provided by Momiji [88]. Onoue and Nishita [102] and Nishita and Dobashi [97] used the model

proposed by Nishimori and Ouchi [96] to generate a bump map which was then used to create

appealing images of a dune field.

Additionally, Roudier et al. [117] has developed a model simulating erosional and depositional

processes to create realistic landforms. Fearing [37] proposed a model to simulate the accumulation

of snow. Although not specifically designed for sand, it may be adapted for this purpose [37].

3.1.2 Sand Displacement

The displacement of sand or soil resulting from contact with a solid object has been modeled ex-

tensively in the computer graphics literature. Li and Moshell [78] provide a model to represent soil

slippage and displacement caused by various excavation activities (e.g., digging, piling, dumping).

Chanclou et al. [19] present a particle-based method to model the effects of moving objects trav-

elling across a soil surface. Sumner et al. [136, 137] simulate the displacement of sand, mud, and

snow caused by the impact of a rigid body. A height map is used to represent the initial surface.

The sand from cells struck by the object are then compressed and displaced toward neighbouring

cells. Onoue and Nishita [103, 104] allow for displacement caused by a concave object by storing

a series of height spans at each cell instead of a representing the surface as a simple height map.

The objects that impact the sand are also modeled using these height spans. Zhu and Bridson [150]

animate sand by treating it as a fluid. Bell et al. [13] represent granular materials as a system of

individual particles. The forces acting on each grain are then simulated to model the impact of

another object.
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3.2 Reflection Models

The following are models which simulate characteristics relating to the appearance of sand. We

describe first some general purpose models that may be adapted to sand. We then outline the various

models available for simulating particular effects.

3.2.1 General Models

Some general models available in the computer graphics literature may be applied to sand. Oren and

Nayar [105] generalized the widely used Lambertian model [148] by representing a surface using

a collection of symmetrical V-shaped cavities. The authors compare the output from their model

to a sand sample. This model, however, only simulates reflectance in the spatial domain. Spectral

reflectance data is required as input to the model. Hanrahan and Krueger [47] proposed a scattering

model consisting of layers of various materials. Reflection, transmission, subsurface scattering and

absorption are simulated within each layer using Monte Carlo techniques [46]. Scattering events are

simulated with the Henyey-Greenstein phase function [52], the widespread use of which has recently

been called into question [6, 7, 8, 80]. The Henyey-Greenstein phase function is an empirical

function with a single parameter which bears no relation to the sand characterization data [80].

There have also been models for particulate media presented in the optics and geophysics litera-

tures. Hapke [48] proposed an analytic radiative transfer model for particulate surfaces, which was

then used to simulate reflectances from planetary surfaces [50]. Emslie and Aronson [35] modeled

particulate surfaces, treating large particles separately from those smaller than the wavelength of

light. Large particles were modeled using spheres of the same volume as actual particles and ab-

sorption was simulated at small scale asperities on the surface of the particle. However, their model

was only applicable to the far infrared [31]. Egan and Hilgeman [31] subsequently rectified this by

simulating scattering, in addition to absorption, at these asperities.

The preceding models are intended to simulate a wide variety of materials. As such, their

parameters do not specifically relate to sand. This list, however, is by no means a complete list of
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widely applicable reflection models. The interested reader is referred to the work of Premǒze [111]

for a broader survey, including more detailed descriptions of some of the models listed here.

3.2.2 Related Models

Soulié et al. [131] used Voronoı̈ diagrams [3] to model a compact granular material, such as gran-

ite. Subsurface scattering within the medium is accomplished using the Henyey-Greenstein phase

function [52]. Their model is not directly applicable to sand because sand is a loose granular mate-

rial [107]. The model proposed by Soulié et al. does not account for pore space.

3.2.3 Simulation of Specific Effects

The following models simulate various effects described in Section 2.2.

Moisture

Various methods exist to achieve the darkening effect caused by water. A simple technique would

be to apply a wetness map to scale the reflectance of the material, as done by Kass and Miller [66].

Jensen et al. [65] use an extension of the Henyey-Greenstein phase function previously used by,

among others, Irvine [60] and Uesugi et al. [141]. Jensen et al. adjust the degree of forward

scattering to achieve varying levels of wetness. A layer of water over the surface is also modeled.

Lobell and Asner [81] use an exponential function to empirically model reflectance in terms of

moisture content. Neema et al. [93] analytically model the sand medium using layers of reflective

spheres coated by a thin film of water, the thickness of which is a function of moisture content.

Iron Oxides

Barron and Montealegre [10] apply Kubelka-Munk theory [75] to model the influence of iron oxides

on soil colour. Torrent et al. [138] relate hematite and goethite concentrations to a function of the

Munsell colour [94] of the soil, which Torrent et al. call the redness rating. Okin and Painter [100]
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use spherical, hematite coated quartz particles to study the effect of grain size on the reflectance of

desert sands.

Roughness

There are several models in the remote sensing literature for simulating the scattering of light at

rough soil surfaces. Many of these models follow the work of Egbert [33], simulating shadowing

and masking effects using occluders distributed over a plane. Cierniewski [20] proposed a mathe-

matical model to derive the reflectance of an arbitrary rough soil surface relative to the reflectance

of a smooth surface consisting of the same soil. The rough surface is modeled using spheres dis-

tributed uniformly across a tilted plane. This model has subsequently been improved by, among

other changes, using spheroids instead of spheres and accounting for specular reflection. These im-

provements are summarized by Cierniewski and Karnieli [21]. Norman et al. [98] represent the soil

surface as regularly spaced boxes over a plane.

Other models for rough soil surfaces include that proposed by Irons and Smith [59]. They used

the Minnaert [87] function to investigate the effect of surface roughness on reflectance. Walthall

et al. [147] model the bidirectional reflectance of soil surfaces as a simple empirical function of

roughness. Despan et al. [30] analytically model rough soil surfaces using a Gaussian function for

the surface height. Cooper and Smith [23] used ray tracing methods to simulate a soil surface whose

height is described by periodic function over the XY -plane.

Li et al. [79] examine roughness on a smaller scale by modeling soil particles as two randomly

oriented plane boundaries. Reflection and transmission through the particle is computed analyti-

cally, accounting for polarization.∗ A doubling algorithm [32] is then applied to extend the individ-

ual particle model to represent a half space of soil. Li et al. [80] have subsequently expanded this

model to include one level of multiple reflection by allowing multiple planes for the upper boundary

of the particle.

∗Polarization arises from the difference in phase between the electric and magnetic wave components of light [16].
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Organic Matter

Ingleby and Crow [58] propose a method for determining the organic matter content of soils from

soil reflectance. Islam et al. [62] use principal component analysis to determine various soil param-

eters, including organic matter content, from reflectance.
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Optics

In the following, relevant issues from optics are discussed. First, we shall address the inconsistency

with which various optical terms are used and clarify the optical terminology as used in this thesis.

Next, we will review some results from optics that are required to implement the SPLITS model.

The reader may wish to refer back to this chapter from time to time while progressing through the

remainder of this thesis.

4.1 Conventions and Nomenclature

Due to the variation in the use of terminology present in the optics and computer graphics literatures,

it is important to clarify the meaning of the terminology used in this thesis. We shall use terminology

drawn from the works of Nicodemus et al. [95], Muller [91], and Bohren and Huffman [15].

4.1.1 Complex Refractive Index

The nomenclature associated with the complex refractive indices of media is inconsistent throughout

the optics literature. Muller [91] provides an excellent account of the different conventions and

nomenclature used in optics.

19
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There are four definitions used for the complex refractive index:

η = n(1± iκ) = n± ik. (4.1)

Some authors may use k in place of κ , or vice versa, in the above. Whether one uses plus or

minus depends on the convention used when defining the time dependent factor, exp(∓iωt), of the

electromagnetic wave [91]. The two forms n(1+ iκ) and n+ ik are equivalent, as are n(1− iκ) and

n− ik, and are related by

k = nκ . (4.2)

The real part, n, of the complex refractive index has been consistently referred to in the literature

as the refractive index or the real part of the refractive index [91]. However, many terms are used

to describe k and κ , such as extinction coefficient or index, absorption coefficient or index, and

attenuation coefficient or index. To make matters worse, almost every term that has been used for k

has been used for κ , and vice versa [91]. The term absorption coefficient is particularly misleading

since the factor describing the absorption of light within a medium,

α =
4πk
λ

, (4.3)

has this name. The terms extinction coefficient and attenuation coefficient also have other mean-

ings [15, 61].

In this thesis, we shall use the preferred terminology proposed by Muller [91]:

η = (complex) refractive index,

n = (real part of the) refractive index,

k = extinction index or imaginary part of the refractive index,

κ = absorption index,

α = absorption coefficient.

We shall use the forms of the complex refractive index with a positive imaginary part, preferring
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the form n + ik over n(1 + iκ). However, the latter may be used when referring to works by other

authors using that form, as in Section 4.4.

4.2 Birefringence

Birefringence, also known as double refraction, occurs when light entering a material splits into two

beams, called the ordinary and extraordinary rays (o-ray and e-ray for short), that travel at different

speeds [90]. There are, therefore, two indices of refraction, ηo and ηe. This effect is particularly

evident in calcite, for example [90]. For simplicity, however, we may ignore the extraordinary ray

for materials with low birefringence. We may also combine the two indices of refraction using a

weighted mean, given by

η =
2ηo +ηe

3
, (4.4)

as has been done by Kerker et al. [68].

4.3 Mixed Materials

There are several methods for computing the complex refractive index of a mixture of two or more

materials. These methods involve computing the dielectric constant∗ of the mixture, εavg, as a func-

tion of the dielectric constants and volume fractions of each of the constituents. A result from

Maxwell Garnett theory [15] gives εavg for a mixture consisting of inclusions, with dielectric con-

stant εi, dispersed within a matrix having dielectric constant εm. If the volume fraction of the

inclusions is νi, then

εavg = εm



1+
3νi

(

εi−εm
εi+2εm

)

1−νi

(

εi−εm
εi+2εm

)



 . (4.5)

∗The dielectric constant is the square of the complex refractive index [106].
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This method has been used previously by Okin and Painter [100], and will be used in the SPLITS

model (Section 6.2.4). Equation (4.5) may be approximated using the Bruggeman equation [15],

νi
εi − εavg

εi +2εavg
+(1−νi)

εm − εavg

εm +2εavg
= 0, (4.6)

as has been done by Sokolik and Toon [130]. Due to the symmetry of the above equation (i.e., the

matrix and the inclusions are interchangable), one can simulate mixtures of more than two minerals

simply by adding additional terms [130], yielding the affine combination

∑
j

ν j
ε j − εavg

ε j +2εavg
= 0, (4.7)

with ∑ j ν j = 1. One must, of course, first solve for εavg. A simple volumetric mean may also be

used to approximate εavg, as has also been done by Sokolik and Toon [130].

4.4 Generalization of Snell’s Law for an Absorbing Medium

Refraction at an interface between two dielectric media is given by Snell’s Law [16, 106]:

nt sinθt = ni sinθi, (4.8)

where ni and nt are the refractive indices of the two media, θi is the angle of incidence, and θt is the

angle of refraction, as depicted in Figure 4.1. However, if one or both of the media are absorbing,

then the corresponding refractive index, η = n(1+ iκ), is complex, as is θt . Thus, θt no longer has

its intuitive interpretation as an angle of refraction [16].

To obtain the direction of propagation, that is, a real angle of refraction, θ ′
t , one must work from

the wave equations describing the propagation of light in an absorbing medium. This yields [16]

cosθ ′
t =

nq(cosψ −κ sinψ)

sin2 θi +n2q2(cosψ −κ sinψ)2
, (4.9)
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Figure 4.1: Refraction at the interface between two media.

sinθ ′
t =

sinθi
√

sin2 θi +n2q2(cosψ −κ sinψ)2
, (4.10)

where η = n(1+ iκ) is the relative complex refractive index and

q =

(

(

1− 1−κ2

n2(1+κ2)2 sin2 θi

)2

+

(

2κ
n2(1+κ2)2 sin2 θi

)2
) 1

4

,

ψ =
1
2

tan−1
(

2κ sin2 θi

n2(1+κ2)2 − (1−κ2)sin2 θi

)

.

Note that Equation (4.10) can be rewritten as n′ sinθ ′
t = sinθi, with n′ ∈ R, and thus has the

form of Snell’s Law. However, n′ now depends on the incident angle in addition to the properties of

the media [16].

4.5 Reflectance at a Plane Surface

The reflectance at a plane interface between two media with complex refractive indices η1 and η2

is described by the Fresnel equations [106]. Defining the relative refractive index η = η2/η1, the

reflection coefficients are given by

rT E =
cosθi −

√

η2 − sin2 θi

cosθi +
√

η2 − sin2 θi
,

rT M =
η2 cosθi −

√

η2 − sin2 θi

η2 cosθi +
√

η2 − sin2 θi
,
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for the transverse electric (TE) and transverse magnetic (TM) modes, respectively [106]. The re-

flectances for the TE and TM modes are then given, respectively, by RT E = |rT E |2 and RT M = |rT M|2

[106]. For natural (unpolarized) light, the reflectance is the average of the reflectances for the two

modes [16],

R =
RT E +RT M

2
. (4.11)
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Data

In this chapter, the data required to implement the SPLITS model is provided, along with details

on how the data was arrived at in cases where we have used data which was derived from raw data

provided. We also discuss various issues concerning the acquisition of the data.

5.1 Mineral Properties

The following outlines the properties of the various mineral constituents in sands.

5.1.1 Occurrence of Iron Oxides

As previously mentioned (Section 2.2.1), iron oxides are the most important factor influencing the

colour of sands. Iron oxide concentration within soils varies from less than 0.1% to several multiples

of 10% [24]. Hematite and goethite are the most common iron oxides in soils, with goethite being

the most common and hematite being the second most common [24]. Goethite dominates in cooler,

temperate regions where hematite occurrence is negligible [24]. In warmer climates, goethite and

hematite occur together. The ratio

mass (hematite)
mass (hematite)+mass (goethite)

,

25
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Material Chemical Formula Density (kgm−3) Refractive Index
Water H2O 1.0×103 Figure 5.1
Quartz α-SiO2 2.65×103 Figure 5.2
Hematite Fe2O3 5.2–5.3×103 Figure 5.3
Goethite α-FeO(OH) 4.3×103 Figure 5.4
Magnetite Fe3O4 5.2×103 Figure 5.5
Kaolinite Al2Si2O5(OH)4 2.58–2.60×103 Figure 5.6

Table 5.1: Summary of physical and optical properties of minerals found in sands. All densities and
chemical formulae are provided by Mottana et al. [90].

describing the relative proportions (by mass) of hematite and goethite, may vary anywhere from

zero to about 0.90-0.95 [24].

5.1.2 Refractive Indices

Plots for the complex refractive index of the minerals used in SPLITS are provided at the end

of this chapter in Figures 5.1 through 5.6, outlined in Table 5.1 and beginning on page 32. The

complex refractive indices of goethite, kaolinite, and illite, are provided in tabular form by Egan and

Hilgeman [32]. The ordinary ray and extraordinary ray complex indices of refraction for hematite

were acquired from plots provided by Sokolik and Toon [130]. This data was averaged to yield a

combined refractive index as described in Section 4.2. The data for magnetite was extracted from

plots are provided by Schlegel et al. [119]. A table of complex refractive index data for water is

provided by Hale and Querry [45] covering the range from 0.2 to 200 µm. For the visible region,

the real part of the refractive index of water may be approximated by the expression

nw(λ ) = 1.324+
3.046×103

λ 2 ,

where λ is the wavelength in nanometers, which was derived by Kerker [67] to fit measured data.

The refractive index of quartz between 0.18 and 0.71 µm is given by

nq(λ ) =

√

1+∑
k

βkλ 2

λ 2 −λ 2
k

, (5.1)
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Ordinary Ray Extraordinary Ray
k βk λk (µm) βk λk (µm)
1 0.663044 6.00×10−2 0.665721 6.00×10−2

2 0.517852 1.060×10−1 0.503511 1.060×10−1

3 0.175912 1.190×10−1 0.214792 1.190×10−1

4 0.565380 8.844×100 0.539173 8.792×100

5 1.675299 2.0742×101 1.807613 1.970×101

Table 5.2: Constants used in Equation (5.1) to compute the ordinary and extraordinary ray refractive
indices of quartz [113, 139].

where λ is the wavelength in micrometers and βk and λk are constants [113, 139], provided in

Table 5.2. Birefringence in quartz is low [43], and therefore only the ordinary ray refractive index

was used in the SPLITS model.

Data Availability for Hematite

There are many conflicting sources of refractive index data for hematite. These data cover various

ranges throughout the electromagnetic spectrum and vary over several orders of magnitude for a

given wavelength. This may be due to the difficulties involved in measuring the refractive index for

a material that is opaque except when in very thin sections. Popova et al. [109] provide complex

refractive index data for hematite in the infrared region of the electromagnetic spectrum. Several au-

thors [5, 53, 68, 144] provide data for hematite that partially covers the visible region. The available

data also comes in many forms. Marusak et al. [83] and Bailey [5] provide absorption coefficient

data in cm−1, from which one can calculate the imaginary part of the refractive index [106]. They

do not, however, provide data for the real part of the refractive index. Some authors [92, 121]

only provide absorbance data based on reflection measurements. Absorbance relates the reflected

radiance, I, to the incident radiance, I0, and is

A = log
(

I0

I

)

.
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Galuza et al. [39] provide plots of the complex dielectric constant, the square of the refractive index,

computed using Kramers-Kronig analysis [70, 73]. Several authors [53, 68, 112] provide complex

refractive index data for hematite hydrosols,∗ from which Baikov et al. [4] calculated the complex

refractive index for hematite in air. Bedidi and Cervelle [12] calculated the complex refractive

index for hematite and goethite from reflectance measurements of hematite (respectively goethite)

immersed in water and in oil using the Königsberger equations [27, 69]. This method, however, is

known to be problematic for highly opaque materials [34]. Sokolik and Toon [130] provide plots

for complex refractive index of hematite for the ordinary and for the extraordinary ray. Their plots

cover the ranges from 0.2 to 30 µm, with separate plots for the region from 0.2 to 2.5 µm. In the

SPLITS model, we use data extracted from the plots by Sokolik and Toon [130] because it was the

only source of data we found which:

• covered the entire visible range,

• provided complex refractive index data directly (i.e., we did not have to compute the refractive

index from the provided data),

• provided both the real and imaginary parts of the complex refractive index, and

• was not acquired using a method known to have problems.

5.1.3 Density

The densities for the various mineral constituents in the SPLITS model were provided by Mottana

et al. [90] and are shown in Table 5.1. The midpoint was used for minerals in which a range was

given.

5.2 Grain Properties

The following properties describe the sand particles within the medium.

∗A hydrosol is a solution of small particles immersed in water [120].
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Soil Texture Entire Soil Sand Silt Clay
Sand Silt Clay dg (mm) σg dg (mm) σg dg (mm) σg dg (mm) σg

100 0 0 0.316 1.64 0.316 1.64 - -
90 10 0 0.125 2.23 0.129 2.09 0.272 3.75 -
85 15 0 0.108 2.32 0.112 2.17 0.173 3.32 -
90 0 10 0.0899 5.10 0.129 2.09 - 0.0139 4.45

Table 5.3: Geometric mean particle diameter (dg) and standard deviation (σg) for sands with various
mixtures of clay, silt and sand-sized particles. The parameters dg and σg are listed for the entire soil
and for each of the soil separates individually. The data is provided by Shirazi et al. [123].

5.2.1 Particle Size Distribution

The USDA [129] defines sand grains as having particle diameters ranging from 0.05 to 2mm

(Section 2.1). Sand is defined as consisting of at least 85% by weight, and the percentage of silt

plus 1.5 times the percentage the clay (by weight) must be less than 15 [129].

Wopfner and Twindale [149] reported median grain sizes of 0.2 to 0.3mm for dune sands. Leu

[77] found sand grains at a beach ranging between 0.32 and 0.95mm, with a mean of 0.55mm.

Shirazi and Boersma [122] developed a model using piecewise logarithmic function to represent

the particle size distribution of soils. This model was subsequently refined by Shirazi et al. [123]

by using a piecewise log-normal distribution, parameterized by the geometric mean particle diam-

eter, dg, and its standard deviation, σg. The model was further extended [124] to account for rock

fragments (particles larger than 2mm). In the SPLITS model, as we will not be considering rock

fragments, the former refinement [123] shall be used. Data for dg and σg for sands is provided in

Table 5.3.

5.2.2 Roundness and Sphericity

The roundness and sphericity used in SPLITS was obtained from data provided by Vepraskas and

Cassel [143]. Vepraskas and Cassel evaluated the mean roundness, mean sphericity, and the corre-

sponding standard deviations of sand-sized grains from several coastal soil samples. Five of these

soil samples were sands (i.e., the textural class was sand), the data for which are shown in Table 5.4.

Roundness and sphericity in the SPLITS model will be given by normally distributed random vari-
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Roundness Sphericity
Site mean SD min max mean SD min max
1 0.45 0.07 0.3 0.6 0.78 0.06 0.63 0.91
3 0.47 0.07 0.3 0.6 0.79 0.06 0.61 0.91
4 0.52 0.07 0.4 0.7 0.81 0.07 0.60 0.95
22 0.49 0.08 0.2 0.6 0.81 0.07 0.61 0.94
27 0.48 0.07 0.3 0.6 0.80 0.06 0.67 0.91
mean 0.482 0.072 0.798 0.064
minimum 0.2 0.60
maximum 0.7 0.95

Table 5.4: Roundness and sphericity statistics for sand-sized grains from sand samples collected
from various sites by Vepraskas and Cassel [143]. The average mean and standard deviation across
all five sites, and the union of the ranges, are used in the SPLITS model.

ables, with mean and standard deviation derived by taking the average of the statistics across all

of the sites. We shall further constrain the roundness and sphericity to lie within the union of the

ranges for each of the five sites.

5.2.3 Coating Thickness

Wopfner and Twindale [149] reported that sand grains between 0.05mm and 1.2mm from red dune

sands were coated by a crust 1-5 µm thick. The crust was composed of hematite within a matrix of

kaolinite and illite.

5.3 Properties of a Sand Medium

The following properties relate to the sand medium as a whole.

5.3.1 Depth

Sand is, for practical purposes, a semi-infinite medium. However, light rarely penetrates beyond

several millimeters through sand [93, 101]. For our model, we use a depth of one meter.
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5.3.2 Porosity

The porosity of a soil is the volume of the pore space a fraction of the total volume. For soils

in general, the porosity may vary from as low as 25% to upwards of 60% [18]. A soil that is

suitable for plant growth will generally be evenly split between the pore space and the solid portion.

However, the porosity varies with soil texture, with coarse soils being less porous than finer soils.

For sands, the porosity typically varies between 35% and 50% [17]. For the SPLITS model, we take

the midpoint of this range: 42.5%.

5.3.3 Water Content

The water content in the SPLITS model is expressed as the degree of saturation, S , which is the

fraction of the pore space occupied by water [81]. As such, it varies from zero to one by definition.

Sands with varying degrees of saturation will be accounted for by the SPLITS model. Where the

degree of saturation is not stated explicitly, however, dry sand (S = 0) shall be the default.
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Figure 5.1: Complex refractive index of water. Top Left: Real part from 0.2 to 200 µm [45], Top
Right: Imaginary part from 0.2 to 200 µm [45], Bottom Left: Real part in the visible region [67],
Bottom Right: Imaginary part in the visible region [45].
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Figure 5.2: Refractive index of quartz [113, 139]. The extinction index of quartz is negligible in
the visible region [108]. Left: Separate ordinary and extraordinary ray refractive indices over entire
domain in which Equation (5.1) is valid. Right: Ordinary ray refractive index restricted to the visible
range.
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Figure 5.3: Complex refractive index of hematite [130]. Top Left: Real part, Top Right: Imagi-
nary part, Bottom Left: Real part restricted to the visible range (weighted average (Section 4.2) of
the ordinary and extraordinary rays), Bottom Right: Imaginary part restricted to the visible range
(weighted average (Section 4.2) of the ordinary and extraordinary rays).
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Figure 5.4: Complex refractive index of limonite (goethite) [32]. Only the ordinary ray refractive
index was provided. Top Left: Real part, Top Right: Imaginary part, Bottom Left: Real part restricted
to the visible range, Bottom Right: Imaginary part restricted to the visible range.
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Figure 5.5: Complex refractive index of magnetite [119]. Only the ordinary ray refractive index
was provided. Top Left: Real part, Top Right: Imaginary part, Bottom Left: Real part restricted to
the visible range, Bottom Right: Imaginary part restricted to the visible range.
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Figure 5.6: Complex refractive index of kaolinite [32]. Only the ordinary ray refractive index was
provided. Top Left: Real part, Top Right: Imaginary part, Bottom Left: Real part restricted to the
visible range, Bottom Right: Imaginary part restricted to the visible range.





Chapter 6

The SPLITS Model

The SPLITS model is a comprehensive light transport model for sand. That is, both the spectral

(colour) and spatial (BRDF) responses are simulated. These two components together constitute

the measurement of appearance [57]. Furthermore, the SPLITS model is dependent on the physical

and mineralogical characterization data for sand.

The remainder of this chapter is organized as follows. We begin with a general overview of the

model in Section 6.1. The construction of the model is described in Section 6.2. In Section 6.3,

the light transport simulation is described. We conclude with an outline of possible extensions

supported by the model in Section 6.4.

6.1 Concept

The SPLITS model consists of sand particles that are randomly distributed within the half space

below a horizontal plane representing the sand surface. The pore space, defined in Section 2.1,

consists of a mixture of air and water. This is depicted in Figure 6.1. The particles are composed

of the most important mineral constituents of sands: quartz, hematite, goethite and magnetite. In

addition, quartz particles may be contaminated by hematite or goethite, or coated by hematite or

goethite in a kaolinite matrix (Section 2.2.1).

39
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Figure 6.1: Modeled sand medium.

Light propagation in the model is described in terms of geometrical ray optics. Thus, it is as-

sumed that the relevant distances are much larger than the wavelength of the light. This assumption

holds over the visible region of the spectrum for sand particles, as they are larger than 0.05mm in

diameter (Section 2.1). It could be argued that an approach based on Mie theory may yield better

results. However, simulating Mie theory may add undue complexity and, due to the large size and

irregular shape of sand particles, may not result in an improvement over a ray optics approxima-

tion [99].

6.2 Construction

We begin by describing the representation of the medium in which the particles are immersed. Next,

details are provided for the geometry and composition of individual particles. We then describe

how those particles are distributed by size, shape, and composition. Table 6.1 lists the parameters

describing the model.
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Parameter Description Range Value Source
nw(λ ) refractive index of water fixed curve (see Figure 5.1) [45]
nq(λ ) refractive index of quartz fixed curve (see Figure 5.2) [139]
ηh(λ ) complex refractive index of hematite fixed curve (see Figure 5.3) [130]
ηg(λ ) complex refractive index of goethite fixed curve (see Figure 5.4) [32]
ηm(λ ) complex refractive index of magnetite fixed curve (see Figure 5.5) [119]
ηk(λ ) complex refractive index of kaolinite fixed curve (see Figure 5.6) [32]
γq density of quartz fixed 2.65g · cm−3 [139]
γh density of hematite fixed 5.25g · cm−3 [90]
γg density of goethite fixed 4.30g · cm−3 [90]
γm density of magnetite fixed 5.20g · cm−3 [90]
γk density of kaolinite fixed 2.59g · cm−3 [90]
D depth of the medium > 9mm∗ 1m [93]
P porosity 0.35–0.50 0.425 [17]
S degree of saturation 0–1 user specified [81]
Ψ sphericity (random variable) 0.60–0.95 Ψ = 0.798, σΨ = 0.064 [143]
R roundness (random variable) 0.3–0.6 R = 0.482, σR = 0.072 [143]
h′ relative coating thickness h = 1–5 µm h′ = 5 µm/1.2mm [149]
ζ1,ζ2,ζ3 soil texture (clay, silt, sand) see Figure 2.3 user specified [129]
µ ′

p,µ ′
m,µ ′

c partition (pure, mixed, coated) ∑ µ ′ = 1 user specified Section 6.2.5
ϑh mass concentration of hematite see note† user specified [24]
ϑg mass concentration of goethite see note† user specified [24]
ϑm mass concentration of magnetite see note† user specified [24]
∗ conservative upper bound on light penetration through sand [93]
† ϑFe may be several hundred g ·kg−1 [24]; ϑFe defined by Equation (6.3)

Table 6.1: A summary of the model parameters, along with typical ranges and values used.



42 Chapter 6. The SPLITS Model
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Figure 6.2: An example of the light propagation through a modeled sand particle. Left: The particle
consists of a core and an optional coating. The small box around the photon path at the coating
interface corresponds to the layer interface diagram to the right. Right: A closer look at the modeled
interface between the core, coating, and/or the surrounding medium.

6.2.1 Extended Boundaries

As previously mentioned, the sand medium is bounded above by a horizontal plane representing

the surface. The medium is additionally bounded below by another horizontal plane to prevent

runaway photons from occurring during the light transport simulation. These two planes are called

the extended boundaries (Figure 6.1). The distance, D, between them is set high enough so that

light penetration to that depth is negligible (Section 5.3.1).

6.2.2 Pore Space

The pore space, as previously stated, consists of the air and water between the sand particles. The

porosity, P , defines the volume of pore space as a fraction of sand volume. The volume of water

in the sand is expressed using the degree of saturation, S , as defined in Section 5.3.3. The amount

of water in the sand may also be expressed as a volumetric water content, w, which is the fraction

of the total volume occupied by water [81]. This may be related to the degree of saturation by

S = w/P .
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Figure 6.3: Prolate spheroid.

6.2.3 Particle Geometry

Individual particles consist of a core and an optional coating, as depicted in Figure 6.2 (Left).

The core is modeled as a prolate spheroid with the semiminor axis of length a and the semimajor

axis of length c, with 0 < a ≤ c, as depicted in Figure 6.3. The particle diameter is thus given by

s = 2c. When placed on a horizontal plane, a prolate spheroid will naturally lay so that the major axis

is parallel to the plane. The projection of the prolate spheroid onto a horizontal plane is therefore

an ellipse with semiminor and semimajor axes of a and c respectively. Thus, from Equation (2.1), a

and c are related to the Riley sphericity, Ψ, by the expression

Ψ =

√

a
c

. (6.1)

Optionally, the core may be coated by a layer of uniform thickness, h, that is proportional to the

particle size, with h′ = h/2c. The coating thickness is assumed to be small relative to the size of the

particle, so that light travelling within the coating does not stray far from the point of entry. Hence,

the coating may be approximated locally as a flat slab.

The interfaces between the core, coating, and surrounding medium are modeled using randomly

oriented microfacets of equal area to simulate a rough surface, as shown in Figure 6.2 (Right). The

orientations of the facets are distributed such that the dot product between the microfacet normal,
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n′, and the interface normal, n, is given by

n′ ·n = 1−|X|, (6.2)

where X is normally distributed with zero mean and standard deviation

σ =
1−R

2
.

This standard deviation was chosen so that R < n′ ·n ≤ 1 for 95% of the facets [116]. Additionally,

the microfacet normals are constrained so that n′ ·n > 0. The particle roundness, R, is therefore

used to control roughness. When R = 1, the interface reduces to a smooth surface, as one would

expect based on the concept of roundness [146].

6.2.4 Particle Composition

The minerals used in the model are quartz, hematite, goethite, and magnetite. Additionally, kaolinite

is used as the coating matrix (Section 2.2.1). These minerals may occur in pure form or as a mixture.

The complex refractive indices of the constituent materials are provided in Chapter 5. These data

may also be obtained from the various works cited in Table 6.1. To represent a mixed material, we

use the equation from Maxwell Garnett theory (Equation (4.5) in Section 4.3) previously used by

Okin and Painter [100].

6.2.5 Particle Types

The particles are divided among the following eight types: pure (quartz (pq), hematite (ph), goethite

(pg), and magnetite (pm)), mixed (hematite with quartz (mh) and goethite with quartz (mg)), and

coated (hematite coated quartz (ch) and goethite coated quartz (cg)). The hematite and goethite in

the coatings are present in the form of inclusions in a kaolinite matrix (Section 2.2.1).

Ultimately, we must determine the fraction of volume, ν j(1−P), occupied by particles of type

j, as j varies over each of the eight particle types (pq, ph, pg, pm, mh, mg, ch, cg). For the mixed
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Particle Mineral
Type Quartz Hematite Goethite Magnetite Total
Pure βq rhgβhg (1− rhg)βhg ϑm µ ′

p
Mixed - rhgµ ′

m (1− rhg)µ ′
m - µ ′

m
Coated - rhgµ ′

c (1− rhg)µ ′
c - µ ′

c
Total βq rhg(βhg + µ ′

m + µ ′
c) (1− rhg)(βhg + µ ′

m + µ ′
c) ϑm 1

Table 6.2: Mass fractions, µ j, of each of the different classes, j, of particles. The quantities βq and
βhg are unknowns, given by Equations (6.7) and (6.6) respectively.

Mineral
Particle Type Quartz Hematite Goethite Magnetite Kaolinite

Pure Quartz 1 0 0 0 0
Hematite 0 1 0 0 0
Goethite 0 0 1 0 0
Magnetite 0 0 0 1 0

Mixed Hematite 1−ϑhg ϑhg 0 0 0
Goethite 1−ϑhg 0 ϑhg 0 0

Coated Hematite 1−ϑhg −ϑ ′
k ϑhg 0 0 ϑ ′

k
Goethite 1−ϑhg −ϑ ′′

k 0 ϑhg 0 ϑ ′′
k

Table 6.3: Mass concentration, ϑ j,`, of the constituent minerals, `, in each of the different classes j
of particles. The quantities ϑ ′

k and ϑ ′′
k are unknowns given by Equations (6.8) and (6.9) respectively.

particles, we must also determine the volume concentration, ν j,`, of each of the constituent minerals

` within the particle, required to apply Equation (4.5). For the coated particles, we must determine

the volume concentration of the inclusions within the coating, which may be computed from the

overall volume concentrations, ν j,`, of each of the mineral constituents of the particle. We begin by

determining the mass fraction, µ j, of each of the various types of particles (Table 6.2), and the mass

concentration, ϑ j,`, of each mineral, `, within particles of each type, j (Table 6.3).

The overall mass concentrations of hematite, goethite, and magnetite in the simulated sand is

controlled, respectively, by ϑh, ϑg, and ϑm. In addition, we define some additional quantities. We

define the iron oxide concentration as

ϑFe = ϑh +ϑg +ϑm. (6.3)

Because of the particular importance of hematite and goethite (as noted in Section 2.2.1), we also
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define the concentration of these two minerals,

ϑhg = ϑh +ϑg, (6.4)

and a ratio describing the relative proportions of hematite and goethite,

rhg =
ϑh

ϑh +ϑg
. (6.5)

The concentrations of hematite and goethite may be given equivalently by the above two quantities.

For simplicity, the concentration of hematite (respectively goethite) in the mixed and coated particles

containing hematite (respectively goethite) is fixed at ϑhg. The remainder of the mineral matter is

quartz (within particle cores) and kaolinite (within coatings).

Three parameters, µ ′
p, µ ′

m, and µ ′
c, partition the particles by mass into the pure, mixed, and

coated particles respectively, with µ ′
p + µ ′

m + µ ′
c = 1. These parameters are further constrained

by the concentrations of the various mineral constituents, since, for example, a particle consisting

of a quartz core coated by a mixture of hematite and kaolinite has an upper bound on hematite

concentration within that particle.

From the above parameters, we may now derive the mass fraction, µ j, of each of the various

categories, j, of particles. These are indicated in Table 6.2, with two unknowns, βq and βhg. Since

we are given the total mass concentration of hematite, ϑh, and the mass concentration of hematite

in each of the particle types (provided in Table 6.3), we have the relationship

rhgβhg +ϑhgrhgµ ′
m +ϑhgrhgµ ′

c = ϑh.

From Equations (6.4) and (6.5), we see that ϑhgrhg = ϑh. Substituting and solving for βhg yields

βhg =
ϑh(1−µ ′

m −µ ′
c)

rhg
.
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Noting that µ ′
p = 1−µ ′

m −µ ′
c, we get

βhg =
ϑhµ ′

p

rhg
= ϑhgµ ′

p. (6.6)

The reader may wish to verify that we arrive at the same result if we relate the concentration of

goethite in each particle types to the total goethite concentration. Now we may solve for βq. Since

top row in Table 6.2 must sum to µ ′
p, we have

βq = µ ′
p −ϑm −βhg. (6.7)

Next, we must determine the two unknowns, ϑ ′
k and ϑ ′′

k , in Table 6.3. These quantities cor-

respond to mass concentrations of kaolinite in the hematite coated quartz and the goethite coated

quartz particles, respectively. Recall that the hematite coated quartz particles consist of a pure quartz

core coated in a mixture of hematite and kaolinite. Hence, to determine ϑ ′
k, corresponding to the

mass concentration of kaolinite within the particle (Table 6.3), we need to know the volume of the

coating as a fraction of the total volume of the particle, νcoat . Solving for ϑ ′
k (see Section B.3 for

details) then yields

ϑ ′
k =

γk

γh

(

γhνcoat(1−ϑhg)− γq(1−νcoat)ϑhg

γq(1−νcoat)+ γkνcoat

)

. (6.8)

Similarly,

ϑ ′′
k =

γk

γg

(

γgνcoat(1−ϑhg)− γq(1−νcoat)ϑhg

γq(1−νcoat)+ γkνcoat

)

. (6.9)

The volume of the coating may be estimated as ASh, where AS is the surface area of the particle,

since we are assuming that the h � s. Therefore,

νcoat ≈
AS(s,Ψ)h

V (s,Ψ)+AS(s,Ψ)h
,
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where V is the volume of the particle. Dividing the numerator and denominator by V yields

νcoat ≈
AV (s,Ψ)h

1+AV (s,Ψ)h
, (6.10)

where AV (s,Ψ) = AS(s,Ψ)/V (s,Ψ) is the surface area to volume ratio of the particle. Noting that

AV (s,Ψ) =
AS(s,Ψ)

V (s,Ψ)
=

s2AS(1,Ψ)

s3V (1,Ψ)
= s−1AV (1,Ψ),

and that, by definition, h = h′s, the particle size, s, may be eliminated from Equation (6.10), yielding

νcoat ≈
AV (1,Ψ)h′

1+AV (1,Ψ)h′
. (6.11)

The surface area to volume ratio of a prolate spheroid with s = 2c = 1 (see Section 7.4.1) is given

by

AV (1,Ψ) = 3

(

1+
sin−1

√
1−Ψ4

Ψ2
√

1−Ψ4

)

. (6.12)

For simplicity, we use the mean sphericity, Ψ, in the above (i.e., AV (1,Ψ)) rather than having νcoat ,

and thus ϑ ′
k and ϑ ′′

k , vary with sphericity.

Now that we know, for each particle type j, the mass concentration ϑ j,` of each mineral `

(Table 6.3), we may compute the density of a particle of type j (see Section B.1),

γ j =

(

∑̀ ϑ j,`

γ`

)−1

. (6.13)

Similarly (Section B.1), we may compute the particle density,∗ γ , knowing the mass fractions µ j of

each particle type j (Table 6.2). This is given by

γ =

(

∑
j

µ j

γ j

)−1

. (6.14)

∗The particle density is the density of the solid particles comprising the sand [17], corresponding to the mean density
of the individual particles.
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Knowing the mass fractions and densities of the components of a mixture allows us to compute the

volume fractions (Section B.2). Thus, we may now compute the volume concentrations of all the

minerals within a particle, as well as the volume fractions of each particle type. The former is given

by

ν j,` =
γ j

γ`
ϑ j,`, (6.15)

and the latter by

ν j =
γ
γ j

µ j. (6.16)

For hematite coated particles, the volume fraction of hematite within the coating, required to com-

pute the complex refractive index of the mixture of hematite and kaolinite, is νch,h/(νch,k +νch,h).

The volume fraction of goethite within the coating of the goethite coated particles is determined

similarly.

6.2.6 Shape and Size Distribution

The size and shape of the particles are randomly distributed and are independent of one another.

That is, the conditional size distribution for any two shapes is the same.

The sphericity is normally distributed, with the mean and the standard deviation derived (in

Section 5.2.2) from data provided by Vepraskas and Cassel [143], and presented in Table 6.1. The

sphericity is also constrained to fall within a range derived from the same data.

The particle size is distributed according to a piecewise∗ log-normal distribution as suggested

by Shirazi et al. [123]. That is, logs is normally distributed. This distribution is characterized by

two parameters: the geometric mean particle diameter, dg, and its standard deviation σg, which are

functions of soil texture (as defined in Section 2.1). It is important to note that, since the distribution

is specified in a piecewise manner, there will be a different dg and σg for each soil separate. Defining

fg(s) =
1

bg
√

2π
exp

(

−(logs−ag)
2

2b2
g

)

, (6.17)

∗There is one piece for each soil separate.
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where ag = logdg and bg = logσg, the mass fraction of the particles with sizes ranging from s1 to

s2 is then given by

Fm(s1,s2) =
∫ s2

s1

s−1fg(s)ds. (6.18)

Assuming that particle density does not vary significantly with size, Fm(s1,s2) may also be inter-

preted as a volume fraction. This approximation is justified by the fact that the silt and sand-sized

particles are dominated by quartz [17]. Shirazi et al. [123] provide a table for determining dg and σg

from texture. An abridged version of this table, restricted to sandy soils, is provided in Section 5.2.1.

For sands with textures not listed in the table, dg and σg may be computed using the following proce-

dure, as explained by Shirazi et al. [123]. First, we fix Zmin = 0.0001 and Zmax = 0.9999. Defining

∆Z = Zmax −Zmin, we then scale the mass fractions of the soil separates, ζ j, yielding ζ ′
j = ζ j∆Z for

1 ≤ j ≤ 3. Next, we define the cumulative mass fractions of the (scaled) soil separates, Z0 = Zmin

and

Z j = Z j−1 +ζ ′
j,

for 1 ≤ j ≤ 3. We then let Y j = Φ−1(Z j) for each j, where Φ is the cumulative density function for

a unit normal random variable. Next, we set

s0 = 0.00005mm,

s1 = 0.002mm,

s2 = 0.05mm,

s3 = 2.0mm.

These are, except for s0, the limits for the three soil separates (Table 2.1). The additional value s0 is

required for this procedure not to yield infinite results. Next, we define x j = logs j for each 0≤ j ≤ 3

and

m j =
Yj −Yj−1

x j − x j−1
,
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for 1 ≤ j ≤ 3. Finally, for clay ( j = 1), silt ( j = 2), and sand ( j = 3), we have ag = x j −Yj/m j and

bg = 1/m j, from which we may derive dg = 10ag and σg = 10bg respectively.

6.3 Light Transport Simulation

When a ray is incident at the outer extended boundary of the sand medium, it is either reflected

or refracted, with the probability of reflection given by the Fresnel equations (Section 4.5). Once

a photon penetrates the outer boundary, it has entered the medium. The photon is then repeatedly

scattered by the sand particles until it escapes the medium or is absorbed. Rather than explicitly

represent and store each particle, however, they are generated stochastically as needed and subse-

quently discarded. Thus, each ray in essence sees a different instantiation of the sand medium. For

rendering applications in which we are concerned about the appearance of the sample from afar, this

acceptable since the response would be averaged over the area of a pixel, which would correspond

to a large area of sand. Thus, each ray cast randomly through a point within the pixel would likely

intercept a different region of the sand surface anyway. The simulation of the fine variation in the

appearance of sand as seen from close up is beyond the scope of this work. Possible methods for

handling this would be to use a texture map to vary the parameters to the model, or to store the

stochastically generated particles as they are generated and reuse them when subsequent rays are

cast at the simulated sand medium. The light transport simulation process is depicted in Figure 6.4.

6.3.1 Extended Boundaries

A photon reaching the surface extended boundary from the inside, as from the outside, is reflected

with a probability given by the Fresnel equations (Section 4.5). If internally reflected, the photon

continues traversing the medium. Otherwise, the photon escapes the medium and the scattered ray

is returned. When a photon reaches the lower extended boundary, it is absorbed.
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Figure 6.4: Flowchart outlining the light transport algorithm used by the SPLITS model. The
dashed line indicates the main loop. The term inner boundary refers to the inside of either extended
boundary, whereas the outer boundary is the outside of the surface extended boundary.
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Figure 6.5: Generating the next particle for the photon to interact with. Left: The distance to the
next particle, the sphericity, roundness, particle size, orientation, and the point on the surface of the
particle to be intercepted is generated randomly. Right: The particle is positioned so that the ray
intercepts the particle at the selected point.

6.3.2 Pore Space

Each time the photon path reaches an interface to the pore space, the medium representing the pore

space is selected randomly. The degree of saturation, S , defined in Section 5.3.3, is used to partition

the pore space into air and water. Water is selected with probability S to represent the pore space.

Air is selected with probability 1−S . This selection is made when an incident ray approaches, as

well as when the photon reaches the outer interface of a particle from the inside.

6.3.3 Generating a Sand Particle

As previously stated (Section 6.1), we do not explicitly store each sand particle. Rather, they are

generated on the fly. The light interaction with this particle is then simulated, and the particle is then

discarded. In a conventional ray tracing approach, particles would be stored explicitly. Random

variables such as the distance to the next particle, the shape, size, and composition of the particle

that is intercepted, and the point on the surface of the particle that is intercepted, arise implicitly as a

consequence of the ray tracing simulation. Conversely, in the SPLITS model, we compute the prob-

ability distribution functions for these random variables and sample them explicitly (Figure 6.5). In

addition, we ensure that the particle lies completely between the extended boundaries and that the

particle does not intersect with the previous ray.

The physical distance to the next particle is determined by randomly choosing a distance for

each category j of particles and then selecting the category for which that distance is minimal. The
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distance, d j, to the next particle of type j is an exponential random variable with a mean of 1/K j,

where K j is the geometric attenuation coefficient∗ for particles of type j. This distance is given by

d j = − 1
K j

logξ , (6.19)

where ξ is uniformly distributed on (0,1) [116].

For prolate spheroids with normally distributed sphericity and log-normally distributed size, K j

reduces (Section 7.4.1) to

K j = K1K2, (6.20)

where

K1 = ν j

∫ smax
smin

s−2fg(s)ds
∫ smax

smin
s−1fg(s)ds

, (6.21)

and

K2 =

∫Ψmax
Ψmin

AV (1,Ψ)Φ′(Ψ,σ 2
Ψ)(Ψ)dΨ

4
∫Ψmax

Ψmin
Φ′(Ψ,σ 2

Ψ)(Ψ)dΨ
. (6.22)

The particle size distribution, fg(s), is given by Equation (6.17), AV (1,Ψ) by Equation (6.12), and

Φ′(x,σ 2)(x) is the probability density function for the normal distribution with mean x and variance

σ2 [116].

The particle size, s, is then chosen according to the probability density function

fs(s′) =
1

C1
fg(s′)s′−2, (6.23)

and the sphericity, Ψ, is chosen according to

fΨ(Ψ′) =
1

C2
AV (Ψ′)Φ′(Ψ,σ 2

Ψ)(Ψ′), (6.24)

∗We use the term geometric attenuation coefficient to mean the geometric cross sectional area per unit volume
(in m−1). The qualification geometric is used to avoid confusion with the term attenuation coefficient and its various
applications [15, 110].
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where C1 and C2 are the constants that ensure that fs and fΨ (respectively) integrate to one over

their domain (Section 7.4.1). Note that Equation (6.23) does not match the distribution provided by

Shirazi et al. [123] shown in the integrand of Equation (6.18). This follows from the distinction

between the particle size distribution by mass, provided by Shirazi et al. [123] (or by volume as we

are interpreting it), and the distribution of particle sizes struck by rays travelling randomly through

the medium (Chapter 7).

Now that we have the particle size, s, the coating thickness is then given by h = h′s, where h′ is

the relative coating thickness specified in Table 6.1. Additionally, the particle roundness, R is given

by a normal random variable with mean R and standard deviation σR given in Table 6.1.

The point on the surface of the particle which is struck is chosen uniformly on the side of the

particle surface facing the ray origin. To select a point uniformly on a prolate spheroid (Figure 6.3),

we set z = cF−1(2ξ1 − 1), where ξ1 is a uniform random number on (0,1), F(u) is the fraction of

the surface area of the spheroid above the plane z = u, given by

F(u) =
1
2

(

1+
eu
√

1− e2u2 + sin−1 eu

e
√

1− e2 + sin−1 e

)

, (6.25)

and e =
√

1−Ψ4 (see Appendix A). Since F−1 is difficult to compute analytically, F may be

inverted using numerical techniques. The other two coordinates are then given by x = ar cosθ and

y = ar sinθ , with θ = 2πξ2 (ξ2 being another canonical random variable) and r =
√

1− z2/c2. To

restrict the generated point to the side of the particle facing the ray origin, we transform the ray

direction v into the particle’s local coordinate space to get v′, and compute the normal n at the

chosen point. We then use the point (x,y,z) if n ·v′ < 0 and (−x,−y,−z) otherwise.

Before we simulate light interaction with this particle, we first check the validity of the particle

as depicted in Figure 6.6. If the point, q, that is d units along the ray lies outside the extended

boundaries, the photon will instead interact with the boundary as described in Section 6.3.1. If the

randomly generated particle intersects with either boundary, the particle is rejected. To account for



56 Chapter 6. The SPLITS Model

Figure 6.6: Tests performed before accepting the generated sand particle. Left: A particle that
intersects an extended boundary is rejected. Middle: A particle that intersects the previous leg of
the path is rejected. Right: Otherwise, the particle is accepted.

the opposition effect∗ [49], the particle is also rejected if it intersects with the last leg of the path. If

the particle is rejected, the above process of generating a distance and particle intersection point is

repeated.

6.3.4 Light Propagation Within a Sand Particle

Light propagation within a sand particle is simulated using a random walk process as exemplified in

Figure 6.2. A photon incident upon the particle first interacts with the outer interface: either between

the pore space and the coating or between the pore space and the core if no coating is present. The

photon may be reflected or transmitted at each interface. When the photon is transmitted into the

core (or internally reflected back into the core) a ray-particle intersection is computed to determine

the next point at which the photon may exit the core. Absorption is simulated within the coating

and within the core. This process is repeated until the photon escapes the particle or is absorbed.

At each interface, the microfacet normal is selected according to Equation (6.2). As mentioned

in Section 6.2.3, the microfacets are of equal area, A. The projected area with respect to the incident

ray, v, is therefore A|n′ · v|. Hence, the probability that an incident ray v strikes a microfacet with

normal n′ should be scaled by |n′ ·v|. This is accomplished using the rejection method [116]. The

photon is then reflected in n′ with a probability once again determined using the Fresnel equations

(Section 4.5), considering the media on either side of the interface. Otherwise, the photon is re-

∗The opposition effect refers to the increase in reflectance toward the source of illumination due to shadow hid-
ing [49].
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fracted according to Snell’s Law for absorbing media [16], described in Section 4.4. If the ray was

to be reflected and n · r < 0 (where r is the reflected vector), or if the ray was to be refracted and

n ·t > 0, then multiple scattering is approximated using a cosine lobe centered around n (respectively

−n) [148].

Given the extinction index, k, of the coating or of the core, absorption within the coating or

within the core is then simulated according to Lambert’s Law [125]. The light is transmitted a

distance d with probability T = exp(−αd), where α is the absorption coefficient, given by

α =
4πk
λ

[106]. For the coating, d = h/|n · t|, where t is the ray transmitted through the coating. For the core,

d is determined from the ray-particle intersection.

6.4 Extensibility

The framework for SPLITS supports several possible extensions. The model may be extended to

include other minerals, given their densities and spectral complex refractive indices. The model can

also be extended to include other particle shape and size distributions (Chapter 7). Additionally,

multiple coatings may be applied to the particles.





Chapter 7

Formal Sand Particle Distributions

7.1 Motivation

The sand particles used in the model may be of arbitrary shapes and sizes (Section 6.4). Even

arbitrary distributions of particle shapes and sizes may be used, provided that the following criteria

are met. First, the following operations must be supported by the individual particles:

• translation,

• ray-particle intersection (nearest intersection only),

• generation of a random point uniformly over the surface,

• computation of the extent along the z-axis.

Translation is required so that particles may be placed at any location within the sand medium.

The computation of the extents of the particle is needed to determine if it lies completely within the

extended boundaries of the medium. To select the point at which a ray travelling through the medium

intercepts the particle, we need to generate a random point uniformly over its surface. Finally, ray-

particle intersection is required for two reasons: to simulate scattering within the particle’s core and,

in the case of a non-convex particle, to determine if the randomly generated point is obscured by

another part of the particle.

59
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In addition, we must be able to compute a path length, d, to the nearest particle within the

medium, and determine the geometry of the intercepted particle. To accomplish this, we formalize

the concept of a particle’s geometry and of a distribution of particle geometries, and develop a

framework around these concepts. This framework is then applied to specific cases, including the

particle distribution used in the SPLITS model.

For the remainder of this chapter, it is assumed that the reader has the relevant background in

probability and in analysis. The reader is referred to the work of Ross [116] for an introduction to

probability and to the excellent works by Marsden and Hoffman [82] and by Royden [118] for the

background in analysis.

7.2 Prerequisites

We first define what is meant by an exponential random variable.

Definition 7.2.1. A random variable X is said to be exponentially distributed [116] with parameter

K if its probability density function is given by

fX(x) = K exp(−Kx) . (7.1)

The cumulative density function for an exponentially distributed random variable, X , with pa-

rameter K is given by

FX(x) = 1− exp(−Kx) . (7.2)

We will also require the following result, which will be used (Section 7.3.3) to show that we

may compute the path length and the particle geometry independently.

Theorem 7.2.2. Let X1, . . . ,Xm be independent, exponentially distributed random variables with

parameters K1, . . . ,Km respectively, and define N = j such that X j < Xk for all k 6= j. Also, define
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Y = XN . Then Y and N are independent, Y is exponentially distributed with parameter

K = ∑
j

K j, (7.3)

and N is distributed according to

Pr(N = j) =
K j

K
. (7.4)

Proof. First, we require the joint probability density function, fY,N , for Y and N; i.e., intuitively,

fY,N(x, j)dx is the infinitesimal probability that Y ≈ x and N = j. However, Y = x and N = j if and

only if X j = x and Xk > X j for each k 6= j. Thus,

fY,N(x, j) = fX j(x)∏
k 6= j

Pr(Xk > x)

= fX j(x)∏
k 6= j

(1−FXk(x))

= K j exp(−K jx)∏
k 6= j

exp(−Kkx)

= K j ∏
k

exp(−Kkx)

= K j exp

(

−
(

∑
k

Kk

)

x

)

.

Substituting Equation (7.3) into the above yields

fY,N(x, j) = K j exp(−Kx) . (7.5)

We first demonstrate that Y is exponentially distributed with its parameter given by Equation (7.3).

We evaluate fY by conditioning on the event that Xk > X j for all k 6= j and then summing over j,

yielding

fY (x) = ∑
j

fY,N(x, j) = ∑
j

K j exp(−Kx) = K exp(−Kx) .
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Hence, Y is exponentially distributed with its parameter given by Equation (7.3), as claimed.

Next, we prove that N is distributed according to Equation (7.4). N = j if and only if Xk > X j

for all k 6= j. We may compute Pr(N = j) by conditioning on the event that X j = x. Integrating over

x ∈ (0,∞) yields

Pr(N = j) =
∫ ∞

0
fY,N(x, j)dx = K j

∫ ∞

0
exp(−Kx) dx.

As
∫

exp(−Kx) dt = exp(−Kx)/(−K), we have

Pr(N = j) = K j

(

0− 1
−K

)

=
K j

K
.

Finally, we must demonstrate that Y and N are indeed independent.

fY,N(x, j) = K j exp(−Kx) =

(

K j

K

)

K exp(−Kx) = Pr(N = j) fY (x).

7.3 Abstract Particle Distributions

7.3.1 Definitions

We begin with a formal definition for a particle geometry, which is, intuitively, a translation invariant

shape.

Definition 7.3.1. A particle geometry, x, is a closed, bounded, path connected subset of R
3 with its

centroid at the origin. That is, integrating over all points p ∈ x yields

∫

x
pdp =











0

0

0











The preceding definition is not used directly. Rather, it is provided to disambiguate our under-

standing of what we mean by a particle geometry. Given the above, we now define the following.
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Definition 7.3.2. A particle is a set (x,c) = {q + c : q ∈ x}. This corresponds to the geometry x

translated by the vector c.

Next, we formalize the concept of a distribution of particles.

Definition 7.3.3. A particle distribution is a pair (X,N), where X is a set of particle geometries and

N : 2X → [0,∞), satisfying

• N(∅) = 0,

• N(A∪B) = N(A)+N(B)−N(A∩B) for all A,B ⊆ X, and

• N(X) is finite.

N(S) represents the number of particles per unit volume with geometry x ∈ S ⊆ X.

A medium then consists of particles (x,c) with x from the distribution (X,N) and c distributed

uniformly throughout R
3. For a continuous distribution, we then define n(x)dx to be the infinitesi-

mal number of particles per unit volume with geometry about x. That is,

N(S) =
∫

S

n(x)dx. (7.6)

We aim to determine two properties of such a distribution. As we will see, the distance, d,

travelled by a ray in the direction v through a volume of particles from (X,N), before intercepting

a particle, is an exponential random variable with parameter K. We must determine K. Second,

the geometry, x, of the particle struck by this ray is also a random variable, the distribution of

which must also be determined. It is important to note the distinction between this distribution

and other distributions describing the medium, such as the number density, n, of particles per unit

volume. We begin by considering the case where X is a singleton. This is then extended to include

discrete particle distributions in which X is finite. Finally, we extend to the continuous case via

approximation by discrete particle distributions.
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Figure 7.1: The bold blue line indicates the set of points that are exposed by the particle geometry
to the indicated vector.

7.3.2 Fixed Particle Distributions

First, however, let us consider a fixed particle distribution. That is, one where X = {x}. In this case,

the set function N is completely specified by N0 = N(X), the total number of particles per unit

volume. We require the aid of the following definition.

Definition 7.3.4. Given a particle geometry x, we say that the point p ∈ x is exposed to the vector v

if p′ = p− tv 6∈ x for all t > 0.

Consider a ray r(t) = p + tv travelling through a medium of particles from (X,N). While it is

possible, if x is non-convex and for small t, to have ray-particle intersections involving points on

the particle not exposed to v, we neglect this case for the sake of simplicity. In any case, this is not

an issue for the SPLITS model as prolate spheroids are convex.

Let Ex,v be the set of exposed points q ∈ x (Figure 7.1), and consider the region Ct in which a

particle (x,c) satisfying c ∈ Ct would intersect the ray r at r(t). That is,

Ct = {c : c = r(t)−q, q ∈ Ex,v} .

Clearly Ex,v has a projected area (projected onto a plane perpendicular to v) of Gv. Since Ct is

merely Ex,v mirrored in the origin (scaled by −1) and translated, it also has a projected area of Gv.

Now consider

C(0,t0) =
⋃

0<t<t0

Ct
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corresponding to C0 swept in the direction of r(t) a distance of t0. We claim that the volume of

C(0,t0) is Gvt0. To demonstrate this, we must show that no two vectors c1,c2 ∈ C0 project to the same

point on a plane perpendicular to v. That is, we must show that no two vectors c1,c2 ∈ C0 satisfy

c2 = c1 + t ′v for some t ′ > 0. Suppose, on the contrary, that this were the case. Then

r(0)−q2 = c2 = c1 + t ′v = r(0)−q1 + t ′v.

Thus, we would have q2 = q1 − t ′v with q1,q2 ∈ Ex,v. This contradicts Definition 7.3.4. Therefore,

the volume of C(0,t0) is Gvt0, as claimed.

Given a subset M ⊂ R
3 of the medium having volume V , the probability that a given particle

(x,c) satisfies c ∈ C(0,t0), and thus intersects the r(t) between 0 and t0, is then Gvt0/V . Since there

are N0 particles per unit volume, the probability that no particles intersect the ray on the interval

(0, t0), and hence the path length d satisfies d > t0, is then

(

1− Gvt0
V

)N0V

.

Allowing M to grow without bound, we see that

1−Fd(t0) = Pr(d > t0) = lim
V→∞

(

1− Gvt0
V

)N0V

.

Taking the limit [151] and solving for Fd yields

Fd(t0) = 1− exp(−N0Gvt0) .

This has the form of Equation (7.2). Hence, d is an exponentially distributed with parameter

K = N0Gv, which we shall call the geometric attenuation coefficient of the distribution (X,N).
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7.3.3 Discrete Particle Distributions

Next, we extend the above to handle a medium consisting of particles having differing geometries.

Definition 7.3.5. A particle distribution (X,N) is discrete if |X| is finite, say X = {x1, . . . ,xm}.

Note that, for a discrete particle distribution, N is completely specified by N j = N({x j}), the

number of particles per unit volume with geometry x j, for 1 ≤ j ≤ m. We may consider the particles

of geometry x j to form separate fixed distributions ({x j},N j) as described in Section 7.3.2. A ray,

v, travelling through the medium would reach a particle with geometry x j at distance d j,∗ where d j

is an exponential random variable with parameter

K j = N jGv(x j). (7.7)

This is the geometric attenuation coefficient for particles with geometry x j. A ray travelling through

the combined medium of particles will then reach a particle at a distance d = min j d j. The geom-

etry, x, of the intercepted particle would then be x j satisfying dk > d j for all k 6= j. Applying

Theorem 7.2.2, it follows that we may equivalently select x and d independently, with d being ex-

ponentially distributed with parameter K and x = x j with probability K j/K, where

K = ∑
j

N jGv(x j). (7.8)

We call K the geometric extinction coefficient of the discrete particle distribution (X,N).

7.3.4 Continuous Particle Distributions

A continuous particle distribution (X,N) may be approximated using a discrete distribution, with

N j ≈ n(x j)dx. As we approximate (X,N) using more particle geometries, allowing dx → 0, we

get the following result.

∗Note that, whereas in Equation (6.19) j varied over the different types (i.e., mineral compositions) of particles, here
j varies over a finite set of particle geometries.
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Corollary 7.3.6. Given a particle distribution (X,N), let n(x) be defined as in Equation (7.6).

Given a ray, v, travelling through a medium of particles from (X,N), define Gv(x) as the cross

sectional area of x projected onto a plane perpendicular to v. Then the path length, d, travelled

along v before reaching a particle is an exponential random variable with the parameter, K, given

by

K =
∫

X

n(x)Gv(x)dx. (7.9)

Similarly to the discrete case, we call K the geometric attenuation coefficient of (X,N). Further-

more, the geometry x of the particle intercepted by v is independent of d and fx is given by

fx
(

x′
)

=
1
K

n
(

x′
)

Gv
(

x′
)

. (7.10)

7.3.5 Separability

A particle’s geometry may depend on multiple variables, and a particle distribution may consist

of particle geometries resulting from varying each of those variables. We would like to determine

when and how we may handle each of these variables independently of one another. We begin by

defining what we mean by a separable function and a separable distribution.

Definition 7.3.7. A function f : A×B → R is called separable∗ [86] if there are two functions

f1 : A → R and f2 : B → R such that f (a,b) = f1(a) f2(b) for all a ∈ A and b ∈ B.

Definition 7.3.8. We call a particle distribution (X,N) separable if X = A×B and if n and Gv are

both separable.

Suppose (X = A×B,N) is separable and let n(a,b) = n1(a)n2(b) and Gv(a,b) = G1(a)G2(b)

∗Strictly speaking, such a function is called product separable [86]. A sum separable function is one that can be
decomposed into a sum of univariate functions [86]. However, as we shall not require the latter, we shall use the term
separable to mean product separable.
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for each x = (a,b) ∈ X. Then

K =
∫

X

n(a,b)Gv(a,b)dx

=
∫

A

∫

B

n1(a)n2(b)G1(a)G2(b)dbda

=
∫

A

n1(a)G1(a)da
∫

B

n2(b)G2(b)db, (7.11)

which may now be expressed as K = K1K2. Furthermore, the probability density, fa, for a, is

fa
(

a′
)

=
∫

B

fx
(

a′,b′) db′

=
1
K

∫

B

n
(

a′,b′)Gv
(

a′,b′) db′

=
1
K

n1
(

a′
)

G1
(

a′
)

∫

B

n2
(

b′)G2
(

b′) db′

=
K2

K
n1
(

a′
)

G1
(

a′
)

=
1

K1
n1
(

a′
)

G1
(

a′
)

. (7.12)

The probability density function, fb, for b reduces similarly. In practical terms, this means that if

the particle geometry depends on multiple variables, x may be selected by selecting each of those

variables independently, provided that the distribution is separable. Also, the geometric attenuation

coefficient may be computed as a product of terms each depending on only one variable.

7.3.6 Separating Size and Shape

Consider a particle geometry given by x = (s,y) ∈ X = R
+ ×Y, where s ∈ R

+ is a scaling fac-

tor representing the size of the particle and additional parameters y ∈ Y describe the shape of the

particle. The geometric cross section of x with respect to v is then

Gv(s,y) = s2Gv(1,y). (7.13)
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If n is then defined using separate shape and size distributions, then the particle distribution is

separable.

In particular, suppose the size distribution is expressed as the fraction, Fv(s1,s2), of volume

occupied by particles with sizes ranging from s1 to s2. Define fv(s) by

Fv(s1,s2) =
∫ s2

s1

fv(s)ds, (7.14)

with Fv(smin,smax) = ν ∈ [0,1] being the total fraction of volume occupied by all particles. In this

case, fv(s)ds is the infinitesimal fraction of volume occupied by particles of size s. Additionally, let

fn(y)dy be the infinitesimal (number) fraction of particles with shape y. We then have

n(s,y) =
fv(s)fn(y)

V (s,y)
,

where V (s,y) is the volume of a particle with geometry (s,y). Since V (s,y) = s3V (1,y), n is

separable and n(s,y) = n1(s)n2(y), with

n1(s) = fv(s)s−3, and (7.15)

n2(y) =
fn(y)

V (1,y)
. (7.16)

Substituting Equation (7.13) and the preceding into Equations (7.11) and (7.12) yields

K1 =
∫ smax

smin

fv(s)s−1 ds, (7.17)

K2 =
∫

Y

fn(y)
Gv(1,y)

V (1,y)
dy, (7.18)

fs
(

s′
)

=
1

K1
fv
(

s′
)

s′−1, and (7.19)

fy
(

y′
)

=
1

K2
fn
(

y′
) Gv (1,y′)

V (1,y′)
. (7.20)
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7.3.7 Orientation

For non-spherical particles, orientation becomes important. From Definition 7.3.1, it follows that

particles with the same “shape” but different orientations have differing geometry. We wish to

consider particles with uniform random orientation. In this case, x = (s,z,ω) ∈ X = R
+ ×Z×S.∗

However, often this particle distribution is not separable, since Gv(1,z,ω) may not be separable.

For instance, this is the case for prolate spheroids with sphericity Ψ ∈ Z = (0,1), as used in the

SPLITS model. For simplicity, instead of treating orientation and shape jointly, we approximate

Gv(1,z,ω) with its mean over all orientations,

G(1,z) =
1

4π

∫

S
Gv(1,z,ω)dω . (7.21)

Now we may consider the distribution separable, with

Gv(s,z,ω) ≈ s2G(1,z),

and

n(s,z,ω) =
1

4π
n1(s)n2(z).

Then K = K1K2K3 with K1 given by Equation (7.17), K2 given by

K2 =
∫

Z

fn(z)
G(1,z)
V (1,z)

dz, (7.22)

and

K3 =
∫

S

1
4π

dω = 1.

∗Strictly, the domain for orientation should be S×C, to include all three degrees of freedom: yaw, pitch, and roll.
However, Gv does not vary with the latter, and may therefore be ignored.
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The probability density function, fs, for the particle size, is given by Equation (7.19), fz is given by

fz
(

z′
)

=
1

K2
fn
(

z′
) G(1,z′)

V (1,z′)
, (7.23)

and fω(ω ′) = 1/4π .

7.3.8 Convex Particles

If the particles are convex, G(1,z) may be further reduced. We approximate the particle shape z

using a convex polyhedron, with A j being the area of the jth face and n j the jth face normal. Recall

that v is the ray travelling through the medium. Each face with n j · v < 0 contributes A j(n j · v) to

Gv. However, since G−v = Gv, we may halve the contributions from all faces, yielding

Gv =
1
2 ∑

j
A j
∣

∣n j ·v
∣

∣ . (7.24)

We may let v = ω without loss of generality. Equation (7.21) then becomes

G =
1

8π

∫

S
∑

j
A j
∣

∣n j ·ω
∣

∣ dω

=
1

8π ∑
j

A j

∫

S

∣

∣n j ·ω
∣

∣ dω . (7.25)

To evaluate
∫

S |n j ·ω|dω , we specify ω = (θ j,φ j) using spherical coordinates with respect to n j.

This yields

∫ 2π

0

∫ π

0

∣

∣cosθ j
∣

∣sinθ j dθ j dφ j

= 2π
(

∫ π
2

0
cosθ j sinθ j dθ j +

∫ π

π
2

−cosθ j sinθ j dθ j

)

= 4π
∫ π

2

0
cosθ j sinθ j dθ j

= 2π
∫ π

2

0
sin2θ j dθ j
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= 2π
(

−1
2

cosπ +
1
2

cos0
)

= 2π .

Substituting back into (7.25) yields

G =
1
4 ∑

j
A j =

1
4

AS, (7.26)

where AS is the surface area. To verify, consider a simple distribution consisting entirely of spheres

with radius r. In this case, G = πr2 and AS = 4πr2, satisfying Equation (7.26). Equations (7.22)

and (7.23) are now reduced, respectively, to

K2 =
1
4

∫

Z

fn(z)AV (1,z)dz, (7.27)

and

fz
(

z′
)

=
1

4K2
fn
(

z′
)

AV (1,z), (7.28)

where AV (1,z) = AS(1,z)/V (1,z) is the surface area to volume ratio of a particle of unit size and

shape z.

7.4 Concrete Particle Distributions

Now that we have a framework for particle distributions in the abstract sense, we are ready to tackle

concrete distributions.

7.4.1 The Particle Distribution used in SPLITS

In the SPLITS model, particles are modeled as randomly oriented prolate spheroids with normally

distributed sphericity and the major axis distributed according to a piecewise logarithmic normal
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distribution function (Section 6.2.6). This distribution is separable∗ (Section 7.3.5), and therefore

we may select the particle size and sphericity independently and the geometric attenuation coeffi-

cient may be decomposed into parts K = K1K2.

The particle size distribution is expressed as the fraction,

Fm(s1,s2) =
∫ s2

s1

fg(s)s−1 ds,

of the mass contained within particles with sizes between s1 and s2, where fg is a lognormal distri-

bution function given by Equation (6.17). As stated in Section 6.2.6, we assume that density does

not vary with particle size and thus Fv/ν = Fm. From Equation (7.14), we see that

fv(s) =
νfg(s)s−1

∫ smax
smin

fg(s)s−1 ds
. (7.29)

Substituting into Equations (7.17) and (7.19) yields

K1 = ν
∫ smax

smin
fg(s)s−2 ds

∫ smax
smin

fg(s)s−1 ds
, and (7.30)

fs
(

s′
)

=
1

K1
fg
(

s′
)

s′−2. (7.31)

The shape of the particle is described by a single parameter, Ψ, the sphericity (Equation (6.1)).

The (infinitesimal) fraction of particles with sphericity Ψ is given by

fn(Ψ) =
Φ′(Ψ,σ 2

Ψ)(Ψ)
∫Ψmax

Ψmin
Φ′(Ψ,σ 2

Ψ)(Ψ)dΨ
, (7.32)

where Φ′(x,σ 2) : R → R
+ is the normal probability density function with mean x and variance

σ2 [116]. For a prolate spheroid with unit size,

AV (1,Ψ) = 3

(

1+
sin−1

√
1−Ψ4

Ψ2
√

1−Ψ4

)

. (7.33)

∗This distribution is separable assuming we make some approximations. See Section 7.3.7 for details.
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Substituting the preceding into Equations (7.27) and (7.28) yields

K2 =

∫Ψmax
Ψmin

Φ′(Ψ,σ 2
Ψ)(Ψ)AV (1,Ψ)dΨ

4
∫Ψmax

Ψmin
Φ′(Ψ,σ 2

Ψ)(Ψ)dΨ
, and (7.34)

fΨ
(

Ψ′)=
1

4K2
Φ′(Ψ,σ 2

Ψ)(Ψ′)AV (1,Ψ). (7.35)

7.4.2 Other Particle Distributions

Other particle distributions may be used by substituting the appropriate formulae into the equations

derived earlier in this chapter. For distributions consisting of particles with a fixed orientation, one

must substitute, into Equations (7.17) through (7.20), the formulae for the geometric cross section,

Gv, and the volume, V , of a particle with unit size. These formulae are provided in Table 7.2 for

selected shapes. For a distribution of particles with uniform random orientation, one may substitute

Equations (7.22) and (7.23) for Equations (7.18) and (7.20) respectively. This requires the mean

geometric cross section, G. In particular, if the particles are convex, then G = AS/4, and Equa-

tions (7.22) and (7.23) reduce, respectively, to Equations (7.27) and (7.28), involving the surface

area to volume ratio, AV . These formulae are provided, for selected shapes, in Table 7.1.
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Particle Shape Surface Area (AS) Volume (V ) Surface Area to Volume Ratio (AV = AS/V )
spheres

• radius r

4πr2 4
3 πr3 3

r

oblate spheroids

• major semiaxis of length a
• minor semiaxis of length c
• eccentricity e

(Equation (A.7))

2πa2 +π c2

e log
( 1+e

1−e

) 4
3 πa2c 3

2c + 3c
4a2e log

(1+e
1−e

)

prolate spheroids

• minor semiaxis of length a
• major semiaxis of length c
• eccentricity e

(Equation (A.5))

2πa2 +2π ac
e sin−1 e 4

3 πa2c 3
2a

(

a
c + sin−1 e

e

)

cubes

• side length a

6a2 a3 6
a

boxes

• side lengths a, b, and c

2(ab+ac+bc) abc 2
(1

a + 1
b + 1

c

)

Table 7.1: Formulae used to compute geometric attenuation coefficients for particle distributions with fixed sized, randomly oriented
shapes. Derivations for the surface areas of the prolate and oblate ellipsoids are given in Appendix A. All other formulae are provided
by Zwillinger [151].
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Particle Shape Geometric Cross Section (Gv) Volume (V ) Cross Sectional Area per unit Volume (Gv/V )
spheroids

• semiaxes parallel to x and
y axes of length a

• semiaxis parallel to z axis
of length c

• eccentricity e
(Equations (A.5) and
(A.7))

πa
√

a2 cos2 θ + c2 sin2 θ 4
3 πa2c 3

4ac

√

a2 cos2 θ + c2 sin2 θ

cubes

• side length a

a2(|α ′|+ |β ′|+ |γ ′|) a3 1
a(|α ′|+ |β ′|+ |γ ′|)

boxes

• side lengths a, b, and c
along the x, y, and z axes
respectively

ab|γ ′|+ac|β ′|+bc|α ′| abc |α ′|
a + |β ′|

b + |γ ′|
c

Table 7.2: Formulae used to compute geometric attenuation coefficients for particle distributions with fixed size and orientation. The
parameters α ′, β ′, and γ ′ are the incident direction cosines with respect to the particle’s local x, y, and z axes (respectively). The
parameter θ = cos−1 γ ′ is the incident angle with respect to the particle’s local z axis. The geometrical cross section for a spheroid
is provided by Asano [2]. The remaining cross sections are special cases of Equation (7.24). All formulae for volumes provided by
Zwillinger [151].
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Figure 7.2: Rays are cast toward the bounding sphere of a particle to determine its cross sectional
area using Monte Carlo [46] techniques. Left: The ray hits intersects the particle. Right: The ray
misses the particle.

7.5 Computing the Traits of a Particle using Monte Carlo Methods

7.5.1 Geometric Cross Section

If the geometric cross section of a particle cannot be determined analytically, it may be computed

using Monte Carlo techniques provided that bounding spheres can be generated and that ray-particle

intersections are supported (which is already required by the SPLITS model). To compute the

geometric cross section, Gv from a given direction, v, we first compute a bounding sphere for the

particle. A ray is then cast in given direction toward the sphere. The origin of this ray is randomly

selected from within a disc perpendicular to v, as depicted in Figure 7.2. We then determine if

the ray intersects the particle. This process is repeated N times and the number, n, of times an

intersection occurs is tracked. The geometric cross section is then estimated as

Gv ≈
n
N

πr2, (7.36)

where r is the radius of the bounding sphere. The mean geometric cross section, G, may be com-

puted by randomizing v.
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Figure 7.3: Points are selected randomly from within the bounding box of a particle to compute
its volume using Monte Carlo [46] techniques. Left: The point lies within the particle. Right: The
point is outside the particle.

7.5.2 Volume

The volume of a particle may be computed in a similar manner provided that bounding boxes∗ can

be generated and provided that the particle supports point-classification (i.e., we can determine if a

given point is inside or outside the particle). To do this, we compute a bounding box. A random

point, p, is then selected uniformly from within the bounding box and we determine whether or not

p lies inside the particle, as shown in Figure 7.3. After repeating this process N times, the mean

particle volume is estimated by

V ≈ n
N

Vbb, (7.37)

where n is the number of times the randomly generated point lay within the generated particle, and

Vbb is the volume of the bounding box.

∗Another type of bounding shape, of known volume, may be substituted if we can generate a point uniformly at
random from within that shape.



Chapter 8

Evaluation

To evaluate the SPLITS model objectively, it is necessary to perform comparisons with measured

data directly, so that the results are not confounded by the complexities of a rendering frame-

work [42]. Thus, comparisons were made between measured data [115] and results obtained from

the model using virtual goniophotometric [72] and virtual spectrophotometric [9] methods. These

comparisons are made in two manners. First, we directly compare the output from the model to

measured curves. Additionally, we demonstrate the effects caused by varying individual parameters

to show that the resulting changes are in agreement with what is reported in the literature. We also

compare the spatial (BRDF) response from the model to qualitative descriptions found in the litera-

ture. Additionally, images are presented in this chapter serve to illustrate the colours corresponding

to spectral responses obtained from the model, and to demonstrate potential rendering applications.

8.1 Data Availability

Reflectance data for sand covering the visible region and tied to the corresponding characterization

data is scarce. There are a few relevant databases available. The United States Geological Survey

(USGS) digital spectral library [22] has reflectance curves for several natural and man made ma-

terials, including several mineral specimens. This data covers the region of the spectrum from 0.2

79
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to 3.0 µm. However, only one commercially produced sand sample is among these. The ASTER

spectral library, which includes data from spectral libraries from John Hopkins University (JHU),

the Jet Propulsion Laboratory (JPL) [44], and the aforementioned USGS, also contains reflectance

data for many natural and man made materials. Curves for some of these specimens cover the visi-

ble region of the spectrum while other curves are limited to the infrared. However, while there are

measurements from many soil samples in the ASTER spectral library, few of them are sand and the

associated characterization data is limited. Stoner et al. [134] provide spectral reflectance plots for

various soils, including several sand samples. They also provide the associated characterization data

for each sample. However, their data is primarily for the infrared region, and only covers the portion

of the visible region of the spectrum beyond 520nm. This data set is available in tabular format as

part of the First ISLSCP Field Experiment (FIFE) [54, 135]. Spectral reflectance data for sands

and other granular materials are also provided by the U.S. Army Topographic Engineering Center

(TEC) [115]. These data cover a wide range of sands, from desert dune sands to beach sands. The

database, however, is lacking the associated characterization data.

8.2 Comparisons with Measured Data

Because the TEC database [115] contains a wide variety of sand samples and since this data covers

the entire visible region of the spectrum, this data was chosen for comparison with the SPLITS

model. Due to the lack of characterization data, however, precise quantitative comparisons are

not feasible. Instead, the parameters were selected from within acceptable ranges (Chapter 5 and

Table 6.1) as reported in the literature to attempt to obtain a good match between the measured

and modeled curves. This allows us to demonstrate qualitative agreement with measured data, as

well as to show that reflectance curves of actual sands are reproducible using the SPLITS model.

Four samples were selected from the TEC database [115]: two dune sands, one from Australia

(TEC #10019201), and one from Saudi Arabia (TEC #13j9823), a magnetite rich beach sand from

central Peru (TEC #10039240), and a sample from a dike outcrop in San Bernardino county, Cali-
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fornia (TEC #19au9815).

8.2.1 Measurement Setup

In the experiments performed by Rinker et al. [115], reflected radiance is collected from the normal

direction and compared to the reflected radiance of a reference white. Based on the measurement

setup as outlined by Rinker et al. [115], we inferred that the illumination geometry may be ap-

propriately represented using a hemispherical light source. The data provided is therefore in the

form of a hemispherical-directional reflectance factor [95]. From a practical perspective, this is

a rather difficult measurement to emulate directly using virtual spectrophotometric methods, as it

requires collecting reflected rays at a point. One could instead measure a hemispherical-conical

reflectance using a small collection cone. However, as most reflected rays would not be reflected

in the direction of this small cone, this would require too many rays to be practical. This is es-

pecially true if we intend to run this simulation with several combinations of parameters. For-

tunately, however, the hemispherical-directional reflectance factor is mathematically equivalent to

the directional-hemispherical reflectance [95], which may be simulated easily by casting rays from

normal incidence and collecting all rays reflected into the upper hemisphere.

8.2.2 Results of Comparisons

Figure 8.1 shows comparisons between the reflectance curves of these samples and the correspond-

ing curves simulated using SPLITS. The corresponding parameters, along with root-mean-square

(RMS) errors, are provided in Table 8.1. According to Jacquemoud et al. [64], an RMS error smaller

than 0.03 constitutes a good spectral reconstruction. As shown in Table 8.1, all of the RMS errors

fall within this bound. Generated images for each of the sand samples are depicted in Figure 8.2.

The sand grain pattern was extracted from a photograph and the spectral responses were provided

by the SPLITS model. The degree of saturation, S , was also varied from S = 0 to S = 1 within the

image to show the darkening effect simulated by the model.
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Figure 8.1: Comparisons between real and simulated sand. The solid line indicates the reflectance
of the sand sample. The dashed line indicates the modeled reflectance. The parameters used
and corresponding RMS errors are provided in Table 8.1. Top Left: TEC #10019201, Top Right:
TEC #10039240, Bottom Left: TEC #13j9823, Bottom Right: TEC #19au9815.

TEC # ϑhg rhg ϑm ζ1 ζ2 ζ3 µ ′
p µ ′

m µ ′
c RMSE

10019201 0.01 0.738 0.00 0.000 0.150 0.850 0.00 1.00 0.00 0.0138
10039240 0.05 0.359 0.00 0.000 0.150 0.850 0.50 0.00 0.50 0.0047
13j9823 0.01 0.498 0.17 0.000 0.072 0.928 0.00 1.00 0.00 0.0166
19au9815 0.05 0.000 0.00 0.000 0.150 0.850 0.50 0.00 0.50 0.0072

Table 8.1: The parameters used in the SPLITS model for each of the four sand samples, and the
root-mean-square error (RMSE) between the actual and simulated reflectances. An RMSE smaller
than 0.03 indicates a good spectral reconstruction [64].
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Figure 8.2: Images showing variation of sand colour with moisture as predicted by the model. The
degree of saturation varies from S = 0 at the top of each image to S = 1 at the bottom. From left to
right, the samples are TEC #10019201, TEC #10039240, TEC #13j9823, and TEC #19au9815.
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Figure 8.3: Spectral reflectance curves predicted by the SPLITS model for two of the TEC sand
samples, varying the degree of saturation, S . Left: TEC #13j9823, Right: TEC #19au9815.

8.3 Qualitative Characteristics

To show that the SPLITS model qualitatively behaves like sand, we have also conducted simulations

varying individual parameters. The variation in the spectral responses resulting from changes to

these parameters are shown in Figure 8.4. As expected [11], increasing the iron oxide concentration

lowers the reflectance. Note also the shift in reflectance toward the red end of the spectrum when

goethite is replaced with hematite (i.e., rhg is increased), as confirmed in the literature [28, 138].

Also, as the particle size was decreased, the reflectance predicted by the model increased, in agree-

ment with the literature [11, 145]. The resulting variation in colour is depicted in Figure 8.5. Addi-

tionally, the degree of saturation varied between S = 0 and S = 1 for the four TEC sand samples.

The darkening effect, reported in the literature [11, 81], is reflected in the SPLITS model. Simulated



84 Chapter 8. Evaluation

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

wavelength (nm)

re
fle

ct
an

ce
ϑ

hg
=0.01

ϑ
hg

=0.03

ϑ
hg

=0.05

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

wavelength (nm)

re
fle

ct
an

ce

r
hg

=0.00

r
hg

=0.25

r
hg

=0.90

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

wavelength (nm)

re
fle

ct
an

ce

ϑ
m

=0.00

ϑ
m

=0.15

ϑ
m

=0.30

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

wavelength (nm)

re
fle

ct
an

ce

ζ
1
,ζ

2
,ζ

3
=0.00,0.10,0.90

ζ
1
,ζ

2
,ζ

3
=0.00,0.15,0.85

ζ
1
,ζ

2
,ζ

3
=0.00,0.00,1.00

Figure 8.4: Qualitative behaviour of simulated sand. The solid line in each plot indicates the spectral
response from the SPLITS model with ϑhg = 0.01, rhg = 0.00, ϑm = 0.00, ζ1 = 0.00, ζ2 = 0.10,
ζ3 = 0.90, and µ ′

p = µ ′
m = µ ′

c = 1/3. Top Left: Varying ϑhg, Top Right: Varying rhg, Bottom Left:
Varying ϑm, Bottom Right: Varying the texture (ζ1,ζ2,ζ3).

Figure 8.5: Images showing variation of sand colour as various parameters are changed. The image
on the left (base image) corresponds to the solid lines in Figure 8.4. The remaining images corre-
spond to the spectral responses from the SPLITS model with the same parameters as in the base
image except, from left to right, ϑhg = 0.05, rhg = 0.90, ϑm = 0.30, ζ3 = 1.0.
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Figure 8.6: BRDF of simulated sand. Profiles along the principal plane are shown on the left (the
dashed line indicates the incident direction). Three dimensional plots of the BRDF are shown on
the right. Top: Normal incidence, Middle: For light incident 30◦ from the normal, Bottom: For light
incident 60◦ from the normal.
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Figure 8.7: Images demonstrating potential rendering applications of the SPLITS model to provide
the spectral response for sands in various scenes.∗

reflectance curves for two of these samples are given in Figure 8.3.

A scattering simulation using SPLITS was also conducted to show the spatial distribution pre-

dicted by the model. This is shown in Figure 8.6. While the predicted BRDF is diffuse, there is

forward scattering and retro-reflection. This is in agreement with the literature (Section 2.2).

8.4 Images

In addition to Figures 8.2 and 8.5, which show the colours associated with the spectral responses

obtained from the SPLITS model, spectral responses from the model were also applied to sand

in various desert scenes, depicted in Figure 8.7. These images demonstrate potential rendering

applications for the SPLITS model.

∗Figure 8.7 (Right) is based on a photograph courtesy of Miles Hunter.
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Conclusion

We have presented a new model that simulates spectral light transport for sand. Both the spectral and

spatial responses (the measurement of appearance [57]) are represented. The model is controlled

by parameters that relate to physical and mineralogical properties of sand, and the effects of these

parameters on the model show good quantitative and qualitative agreement with what is reported in

the literature. There is, however, room for future development. There are two aspects that future

work should emphasize: accounting for additional factors that influence light transport in sand

(Section 2.2), as well as improving the quantitative accuracy of the model.

9.1 Strengths and Limitations

While there is good qualitative agreement, work still remains to be done to improve the accuracy

of the model, so that the reflectance of a provided sand sample may be predicted from the char-

acterization data for that sample. Hence, this thesis also serves to point out the lack of and need

for spectral BRDF measurements of natural surfaces along with the characterization data for those

surfaces. Despite the efforts of numerous computer graphics researchers [42, 29, 85], much work

still needs to be done in this area. In most cases where the spectral reflectance or BRDF data is

available, the corresponding characterization data is not, and vice versa. It is therefore difficult to
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verify quantitatively any models for these surfaces without making assumptions about the properties

of the material in question. However, one can still validate the model qualitatively by demonstrat-

ing that modifying input parameters have the expected effect, and quantitatively by showing that

it is possible to obtain matches between reflectances from real samples and from the model using

plausible input parameters, as we have done.

9.2 Future Work

There is also room for future work in making the model more comprehensive. We chose to focus our

attention on the most common types of sands. However, the range of mineralogy present in sands

around the world is very diverse [107]. Additionally, the model could be expanded to include other

types of soils with varying textures (as defined in Section 2.1). Other factors, such as organic matter,

may then become more important. The model could also be expanded to include the infrared region

of the spectrum. Absorption by water, for example, would then become an important factor [11, 45].

These improvements would be useful not only to the computer graphics community, but would allow

the model to become more useful as a tool to soil and remote sensing scientists for determining soil

properties.



Appendix A

Generating a Point on a Spheroid

To implement the SPLITS model using spheroidal particles, it is necessary to generate a random

point uniformly on the surface of a particle (see Section 6.3.3).

In the following, we consider a spheroid centered at the origin with its single∗ axis parallel to

the z-axis, as depicted in Figure A.1. We wish to determine the surface area of the spheroid below a

plane z = t.

A spheroid is the surface of revolution defined by an ellipse

x2

a2 +
z2

c2 = 1, (A.1)

where a > 0 and c > 0, rotated about the z-axis. Solving for x = f (z), we get

f (z) = a

√

1− z2

c2 , z ∈ [−c,c]. (A.2)

Let AS(t) be the surface area of the spheroid below the plane z = t. Then [132]

AS(t) = 2π
∫ t

−c
f (z)

√

1+( f ′(z))2 dz. (A.3)

∗The single axis is the minor axis for an oblate spheroid and is the major axis for a prolate spheroid.
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Figure A.1: The two types of spheroids, Left: Prolate, Right: Oblate. The bold, blue line denotes
the indicatrix (Equation (A.2)).

The total surface area of the spheroid is AS(c). Thus, the fraction of the surface area below the plane

z = t is AS(t)/AS(c).

Differentiating f (z) yields

f ′(z) =
−az

c2
√

1− z2

c2

,

and thus

( f ′(z))2 =
a2z2

c4
(

1− z2

c2

) . (A.4)

Substituting Equations (A.2) and (A.4) into the integrand of Equation (A.3) yields

a

√

1− z2

c2

√

√

√

√1+
a2z2

c4
(

1− z2

c2

)

= a

√

1− z2

c2 +
a2z2

c4

= a

√

1− z2

c2

(

1− a2

c2

)

or

√

1+
z2

c2

(

a2

c2 −1
)

.

We now consider separately two cases: a < c and a > c. These correspond to prolate and oblate

spheroids respectively [151, §4.18].
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A.1 Prolate Spheroid

For a prolate spheroid, a < c, and the eccentricity, e, of the spheroid is defined as [128]

e =

√

1− a2

c2 . (A.5)

Thus, the surface area is

AS(t) = 2πa
∫ t

−c

√

1− e2 z2

c2 dz.

Let u = ez/c. Then du = edz/c and thus dz = cdu/e. Also, as z ranges from −c to t, u ranges

from −e to et/c. Substituting, we get

AS(t) = 2π
ac
e

∫ et/c

−e

√

1−u2 du.

We evaluate the above integration by referring to a table of integrals [151, §5.4.12], yielding

AS(t) = 2π
ac
e
· 1

2

(

u
√

1−u2 + sin−1 u
∣

∣

∣

et/c

u=−e

)

= π
ac
e

(

et
c

√

1− e2t2

c2 + sin−1
(et

c

)

+ e
√

1− e2 + sin−1 e

)

.

The surface area of the entire spheroid is therefore

AS(c) = 2π
ac
e

(

e
√

1− e2 + sin−1 e
)

. (A.6)

Let v = t/c. The fraction F(v) = AS(cv)/AS(c) of the surface area below the plane z = t = cv is

F(v) =
π ac

e

(

e
√

1− e2 + sin−1 e+ ev
√

1− e2v2 + sin−1 ev
)

2π ac
e (e

√
1− e2 + sin−1 e)

=
1
2

(

1+
ev
√

1− e2v2 + sin−1 ev

e
√

1− e2 + sin−1 e

)

.
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A.2 Oblate Spheroid

For an oblate spheroid, a > c, and the eccentricity, e, of the spheroid is defined as [128]

e =

√

1− c2

a2 , (A.7)

which can be re-expressed as

e =
c
a

√

a2

c2 −1.

Thus, the surface area is

AS(t) = 2πa
∫ t

−c

√

1+
z2e2a2

c4 dz

= 2π
a
c2

∫ t

−c

√

c4 + z2e2a2 dz.

Let u = zea. Then du = eadz and thus dz = du/ea. Also, as z ranges from −c to t, u ranges

from −eac to eat.∗ Substituting, we get

AS(t) =
2π
ec2

∫ eat

−eac

√

c4 +u2 du.

Referring to a table of integrals [151, §5.4.11], we get

AS(t) =
2π
ec2 ·

1
2

(

u
√

c4 +u2 + c4 log
(

u+
√

c4 +u2
)∣

∣

∣

eat

u=−eac

)

=
π

ec2

(

eat
√

c4 + e2a2t2 + c4 log
(

eat +
√

c4 + e2a2t2
)

+eac
√

c4 + e2a2c2 − c4 log
(

−eac+
√

c4 + e2a2c2
))

=
π

ec2

(

eat
√

c4 + e2a2t2 + eac
√

c4 + e2a2c2

+c4 log

(

eat +
√

c4 + e2a2t2

−eac+
√

c4 + e2a2c2

))

.

∗mmmmmmm....
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The surface area of the entire spheroid is therefore

AS(c) = 2π
a
c

√

c4 + e2a2c2 +π
c2

e
log

(

eac+
√

c4 + e2a2c2

−eac+
√

c4 + e2a2c2

)

= 2πa
√

c2 + e2a2 +π
c2

e
log

(

eac+ c
√

c2 + e2a2

−eac+ c
√

c2 + e2a2

)

= 2πa
√

c2 + e2a2 +π
c2

e
log

(

ea+
√

c2 + e2a2

−ea+
√

c2 + e2a2

)

.

From Equation (A.7), we get that

c2 + e2a2 = c2 +

(

1− c2

a2

)

a2 = c2 +a2 − c2 = a2.

Substituting back into the above, we get

AS(c) = 2πa2 +π
c2

e
log
(

ea+a
−ea+a

)

= 2πa2 +π
c2

e
log
(

1+ e
1− e

)

.

Let v = t/c. The fraction F(v) = AS(cv)/AS(c) of the surface area below the plane z = t = cv is

F(v) =

π
ec2

(

eac
√

c4 + e2a2c2 + eacv
√

c4 + e2a2c2v2 + c4 log
(

eacv+
√

c4+e2a2c2v2

−eac+
√

c4+e2a2c2

))

2πa2 +π c2

e log
( 1+e

1−e

)

=

1
e

(

ea
√

c2 + e2a2 + eav
√

c2 + e2a2v2 + c2 log
(

eav+
√

c2+e2a2v2

−ea+
√

c2+e2a2

))

2a2 + c2

e log
( 1+e

1−e

)

=

1
e

(

ea2 + eav
√

c2 + e2a2v2 + c2 log
(

eav+
√

c2+e2a2v2

−ea+a

))

2a2 + c2

e log
( 1+e

1−e

)
.

Dividing the numerator and denominator by a2, and dividing the numerator and denominator in the
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logarithm, yields

F(v) =

1
e

(

e+ ev
√

c2

a2 + e2v2 + c2

a2 log

(

ev+
√

c2

a2 +e2v2

1−e

))

2+ c2

ea2 log
( 1+e

1−e

)

=

1
e

(

e+ ev
√

1− e2 + e2v2 +(1− e2) log
(

ev+
√

1−e2+e2v2

1−e

))

2+ 1−e2

e log
( 1+e

1−e

)

=
e
(

1+ v
√

1− e2 + e2v2
)

+(1− e2) log
(

ev+
√

1−e2+e2v2

1−e

)

2e+(1− e2) log
( 1+e

1−e

) .



Appendix B

Mixing Minerals

This appendix deals with issues concerning the relationships between mass and volume fractions of

a mixture of materials with varying densities. These issues arose frequently during the specification

of the SPLITS model (Chapter 6).

B.1 Density of a Mixture

As we will see, to convert between mass and volume fractions, we must first determine the density,

γ , of the mixture. Consider a series of m minerals, with densities γ1, . . . ,γm. Let V j and M j be the

volume and mass of the jth mineral, respectively, and define

V = ∑
j

Vj

to be the total volume, and

M = ∑
j

M j

to be the total mass. The density is then γ = M/V . In general, however, we will know the V j but not

the M j, or vice versa.

If we are given the volumes, V j, for 1 ≤ j ≤ m, and thus the total volume, V , we may re-express

95
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the density as

γ =
∑ j M j

V
.

Noting that γ j = M j/Vj, we have

γ =
∑ j γ jVj

V
= ∑

j
γ j

Vj

V
.

Thus, defining the volume fractions ν j = Vj/V of each constituent j, we have

γ = ∑
j

γ jν j. (B.1)

If, instead, we are provided with the masses, M j, of each of the minerals, then we write the

density as

γ =
M

∑ j Vj
.

As γ j = M j/Vj,

γ =
M

∑ j
M j
γ j

=
1

∑ j
M j
γ jM

.

Now we define the mass fractions µ j = M j/M. Substituting yields

γ =

(

∑
j

µ j

γ j

)−1

. (B.2)

Note that Equations (B.1) and (B.2) may be used to compute the density of a particle given

the volume (respectively mass) concentrations of its mineral constituents. It may also be used to

compute the mean particle density given the densities and volume (respectively mass) fractions of

each of the different types of particles.

B.2 Converting Between Mass and Volume Fractions

The data provided in the literature describing fractions is often in the form of mass fractions (e.g.,

the sand separate fractions, ζ1, ζ2, and ζ3). However, the SPLITS model requires that these be
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converted into volume fractions. We must, therefore, determine how to perform this conversion.

By definition, µ j = M j/M and ν j = Vj/V . Since γ j = M j/Vj and γ = M/V , we have

µ j =
γ jVj

γV
=

γ j

γ
ν j. (B.3)

Similarly, ν j = γµ j/γ j.

B.3 Coated Particles

In the SPLITS model, some particles consist of a pure core with a mixed coating (Section 6.2.5).

Given

• γc, the density of the core,

• γm, the density of the coating matrix,

• γi, the density of the inclusions in the coating,

• ϑi, the mass fraction of the inclusions over the whole particle, and

• νcoat , the volume fraction of the coating,

we require the mass fraction ϑm of the matrix over the whole particle.

Let V be the volume of the entire particle and Vc,Vm,Vi be the volumes of the core, matrix, and

inclusions respectively. Hence,

V = Vc +Vm +Vi. (B.4)

Similarly, let M be the mass of the particle and Mc,Mm,Mi be the masses of the core, matrix, and

inclusions. Now we may express the overall mass fraction of the inclusions as

ϑi =
Mi

M
=

γiVi

M
. (B.5)

Similarly,

ϑm =
γmVm

M
.
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From Equation (B.4), we now have

ϑm =
γm (V −Vc −Vi)

M

=
γm (V −Vc)

M
− γmVi

M

=
γm (V −Vc)

M
− γm

γi

(

γiVi

M

)

.

Substituting Equation (B.5) into the preceding yields

ϑm =
γm (V −Vc)

M
− γm

γi
ϑi.

Recalling that νcoat is the volumetric fraction of the coating, and noting that V −Vc is the volume of

the coating, we have V −Vc = νcoatV . Therefore,

ϑm =
γmνcoatV

M
− γm

γi
ϑi. (B.6)

Expanding M, we get

M = Mc +Mm +Mi = γcVc + γmVm + γiVi.

By expressing Equation (B.4) in terms of Vm and substituting into the preceding, we get

M = γcVc +(V −Vc −Vi)γm + γiVi

= γcVc + γm (V −Vc)+(γi − γm)Vi

= γcVc + γm (V −Vc)+

(

γi − γm

γi

)

γiVi.

As ϑi = γiVi/M, we have

M = γcVc + γm (V −Vc)+

(

γi − γm

γi

)

ϑiM.
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We have now expressed M in terms of itself. Solving for M yields

M =
γcVc + γm (V −Vc)

1−
(

γi−γm
γi

)

ϑi

By multiplying the top and bottom by γi, and once again substituting Vc = (1−νcoat)V , we get

M = γi ·
γc(1−νcoat)V + γmνcoatV

γi − (γi − γm)ϑi

Substituting back into Equation (B.6),

ϑm =
γmνcoatV (γi − γiϑi + γmϑi)

γi (γc(1−νcoat)V + γmνcoatV )
− γm

γi
ϑi

=
γm

γi

(

γiνcoat − γiνcoatϑi + γmνcoatϑi

γc(1−νcoat)+ γmνcoat
−ϑi

)

=
γm

γi

(

γiνcoat(1−ϑi)+ γmνcoatϑi − γc(1−νcoat)ϑi − γmνcoatϑi

γc(1−νcoat)+ γmνcoat

)

=
γm

γi

(

γiνcoat(1−ϑi)− γc(1−νcoat)ϑi

γc(1−νcoat)+ γmνcoat

)

.
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geometric, 67, 68, 74, 76, 77

cumulative density function, 60
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degree of saturation, 31, 41, 42, 53, 81, 83
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particle, see particle density
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dielectric constant, 21
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double refraction, see birefringence
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geometrical ray optics, see ray optics
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abstract, 62
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ray optics, 40
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