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A mathematical model is presented to simulate the growth of a plant leaf. The tissue in the

leaf has been regarded as a viscous, incompressible fluid whose 2D expansion comes from

the non-zero specific growth rate in area. The resulting system of equations are composed of

the modified Navier-Stokes equations. The level set method is used to capture the expanding

leaf front. Numerical simulations indicate that different portions of the leaf expand at

different rates, which is consistent with the biological observations in the growth of a plant

leaf. Numerical results for the case of the Xanthium leaf growth are also presented. A

standard ray tracing technique is applied to produce an animation simulating the leaf

growth process of three days. The key results with their physical and practical implications

are discussed. Copyright # 2004 John Wiley & Sons, Ltd.
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Introduction

Plant modelling and simulation play an important role

in realistic image synthesis for outdoor scenes, forests,

gardens, or even interior designs. Methods and techni-

ques have been developed for various aspects of plant

simulation. For instance, L-system was proposed to

model plant morphology and plant growth,1 in which

plants are described as an arrangement of functional

modules such as buds or leaves. Interactive modeling

methods, which combine a rule-based approach with

traditional geometric modeling techniques, have been

used for generation of many branching objects such as

flowers, bushes, and trees.2 However, these growth

models are for the plant as a whole rather than for the

individual plant organs such as leaves. Rendering tech-

niques for plant leaves using physically-based ap-

proaches have been developed.3,4 The primary focus

of these papers is to create images of static leaves.

However, the modelling of growing plant leaves has not

received much study in the computer graphics literature.

In this paper, we propose a physically-based approach to

model plant leaf growth based on a modification of the

incompressible Navier-Stokes equations.5 A standard

ray tracing technique is applied to produce an anima-

tion simulating the leaf growth process of three days.

Navier-Stokes equations were originally developed to

describe the dynamics of fluid flow.5 Recently, in com-

puter graphics, Navier-Stokes equations have been suc-

cessfully used in the animation of physical phenomena,

for instance, water,6 smoke,7 cloud,8 and fire,9 which are

either fluid or exhibiting the fluid behaviour and hence

the Navier-Stokes equations are a natural approach.

Modelling the growth of plant leaves using the

Navier-Stokes equations, however, is less obvious. For

instance, it is more difficult to view a plant tissue as a

continuum, since the relative size of the fundamental

units, the cells, to a plant tissue is larger than that of the

molecules to a fluid. Nevertheless, it is frequently found

that the tissue or organ of interest consists of rather large

number of cells. The growing region of a primary root of

a Zea seedling consists of more than 250 000 cells.10 As

to the temporal aspects, the growth expansion of tissues

is observed to be continuous. This is evident, for exam-

ple, in the studies of root growth.11 In leaves as well,

growth appears to be smooth in time and with respect to

spatial dimensions. This can be seen in time-lapse

motion pictures of growing plant leaves.12

Another issue of applying the Navier-Stokes equa-

tions to modelling growth is that conservation of mass,

which assumes that matter is neither created nor de-

stroyed, does not hold. For plant growth, matter is
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created in cell divisions. In fact, we will show in the next

section that the relative elemental growth rate is the

divergence of the growth velocity field, r � u. For a plant

element which is expanding, r � u is positive due to

transport and biosynthesis.10 This is in contrast with the

classical modelling of incompressible fluids. We note

that nonzero velocity divergence has recently been used

in the modelling of explosion.13

The mathematical model we used to simulate the

plant leaf growth is a two-dimensional model. The

primary focus is on the growth in area of plant leaves.

One of our future goals is to expand it to three dimen-

sions and include the growth in thickness as well. At

this stage, however, we emphasize the growth of its

two-dimensional shape since the growth in thickness of

a leaf can be considered negligible compared to the

growth in area. For example, the average length and

width of the soybean leaves are 14 cm and 10 cm,14

respectively, whereas the average thickness is 166 mi-

crons.15 In this paper, we model the growth of the plant

leaf as an incompressible viscous flow. The system

consists of the modified momentum equations from

Navier-Stokes equations5,16 and the equation of conti-

nuity based on the experimental data from.17–19 We use

the level set method of Osher and Sethian20 to capture

the expanding leaf edge.

Due to the absence of experimental data, we recognize

that some biological growth factors such as chemical

reaction between cells and genetic development have

not been incorporated into our models. But we believe

that as the experimental measurement improves as well

as the biological growth of plant leaves is better under-

stood, more accurate and complete information can be

obtained and be incorporated into the proposed frame-

work. Our model then can be refined and be used not

just for animation in computer graphics but also to

facilitate biological research for leaf growth.

Modelling

The incompressible Navier-Stokes equations determine

fluid motions by enforcing the conservation of momen-

tum and mass. The resulting momentum and continuity

equations can be written in dimensionless form as:

ut þ ðu � rÞu ¼ 1

Re
�u�rpþ f ð1Þ

r � u ¼ 0; ð2Þ

where u is the fluid velocity vector, p is the pressure, f

denotes body forces such as gravity, and Re is the

Reynolds number which represents the viscosity of the

fluids.5 These equations have been used in the anima-

tions of various physical phenomena involving fluid, or

fluid-like materials.6–9

In10, Silk and Erickson pointed out that many of the

concepts and equations which have been used in the

study of fluids can be applied to plant development. For

plant growth, in particular, the growth of a leaf, u is

identified with the growth velocity, and p is the pressure

exerted by the growing cells. In growth modelling, mass

is not conserved; in fact, it is increasing as the plant

tissues grow. As a result, the continuity equation must

be modified to accommodate the mass increase due to

growth. In the next section, we discuss how the growth

velocity and growth rate are used to model the local

biosynthesis and transport rate in expanding tissue.

Growth Rate

There is a long history of plant leaf growth study by

biologists. In 1933, Avery17 presented a systematic ex-

perimental approach to the study of the growth of

Nicotina tabacum (tobacco). Later, Richards and

Kavanagh18 analyzed the data of Avery to study the

distribution of the values of the relative growth rate in

area. They also derived a mathematical formulation for

plant leaf growth. Consider a small area defined by

P0;P1;P2 and P3 inside the leaf region as shown in

Figure 1(a). For convenience, we choose P0 as the origin

and the polygon is a standard rectangular so that the

area is �x��y. After a short time dt, P1 at (�x; 0)

moves to a new position at (�xþ @u
@x�xdt; @v@x�xdt) and

similarly P2 at (0;�y) moves to (@u@y�ydt;�yþ @v
@y�ydt).

Then the new area can be computed by vector analysis

as �x�yþ ð@u@x þ @v
@yÞ�x�ydt. Therefore, the relative

growth rate (per unit time per unit area) is @u
@x þ @v

@y, which

is precisely the divergence of the growth velocity.

Hence, the continuity equation (2) becomes

r � u ¼ Lðx; tÞ; ð3Þ

where Lðx; tÞ is the relative growth rate.

The field variable L, in general, is unknown. To

produce a realistic simulation comparable to the real

growth of plant leaves, we incorporate the real biologi-

cal data17–19 for L in our simulation. Since the different

parts of the leaf’s lamina might expand at different rates,

Maksymowych19 gave the local growth rates of the

Xanthium leaf on small regions separated by veins.

I. R. WANG, J. W. L. WAN AND G. V. G. BARANOSKI
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2004 John Wiley & Sons, Ltd. 238 Comp. Anim. Virtual Worlds 2004; 15: 237–244



Richards and Kavanagh,18 on the other hand, represent

growth rates by contour lines, as shown in Figure 1(b).

The number on the curves indicate a percentage in-

crease in area per day. For example, the curves marked

100 represent those of approximately the maximum

rate. Then the curves marked 90 indicate that their rate

are 90 percent of the curves marked 100. Even though

these experimental data on different leaves are variable,

we can still conclude that various parts of the leaf’s

lamina expand at different rates and the relative growth

rate is lowest at tip of the leaf and increase in the basal

direction.18,19

Modif|edMomentumEquations

For plant leaf growth, we ignore any body forces (e.g.

gravity) and only assume surface forces, which are

typically expressed by the stress tensor, �. Thus, the

momentum equations can be written as:

ut þ ðu � rÞuþ uðr � uÞ ¼ r � �:

To specify �, we need to make several assumptions.

First, we assume that biological tissues behave more like

viscous than inviscid fluids.21 Second, we assume that

plant leaf growth is isotropic; i.e., there is no preferential

direction for cell growth. This is consistent with the

findings of Richards and Kavanagh for tobacco leaves18

that as the leaf passes the very early growth stages, the

growth tends to be isotropic. We note that since the

growth rates are different at different parts of a leaf, a

non-uniform growth can still result even though the

growth is isotropic. Under these assumptions, the sur-

face forces given by the stress tensor can be modelled by

r � � ¼ �rpþ 1

3Re
rðr � uÞ þ 1

Re
�u;

as for Newtonian fluids obeying the Stokes assump-

tion.5 Combining with the formula for the growth rate

(3), we obtain the modified momentum equations for

the plant leaf growth

ut þ ðu � rÞuþ Lu ¼ �rpþ 1

3Re
rLþ 1

Re
�u: ð4Þ

In summary, the modified continuity equation (3) and

the modified momentum equations (4) form the basis of

our growth model for plant leaves.

Outline ofAlgorithm

Our model presented in this paper consists of a fluid

mechanical component describing the two-dimensional

outgrowth of plant leaves and a diffusion-advection

component determining the spatio-temporal distribu-

tion of the growth rate. We solve the discrete equations

Figure 1. (a) Differential growth of a plant leaf in a short time dt. (b) Distribution of relative growth rate in area (redrawn

from 18).
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corresponding to (3) and (4) over time. The growth velocity

field, updated in each time step, will be used to update the

leaf front. The expanding leaf edge is then passed to a

graphics ray tracer for rendering. The final animation is

composed of frames generated in each time step.

The algorithm can be summarized in the following

major steps:

Step 1. Model the static background as a staggered

grid, inside which model the initial shape of a leaf.

Then, for each simulation time step,

Step 2. Update the velocity field by solving (3) and (4)

using the projection method by Chorin.22

Step 3. Update the shape of the leaf using the new

velocity field.

Step 4. Render one frame of the updated shape of the

leaf using a standard ray-tracer. Go to Step 2.

These steps are described in detail in the following

sections.

Initial Geometric Set-Up

In our mathematical model, the motion of the liquid is

described by the evolution of two dynamic field vari-

ables, velocity and pressure. In two dimensions, the

velocity vector is composed of the horizontal compo-

nent u and the vertical component v. On a Cartesian grid

D, we locate the pressure variables p in the cell centers, u

on the midpoints of the vertical cell edges, and v on the

midpoints of the horizontal cell edges. As a result, each

of the discrete values of u, v and p is shifted half a cell

length to each other. This staggered arrangement of the

unknowns can prevent possible pressure oscillations

which could happen if we evaluated them at the same

grid points.23

To represent the shape of the leaf edge, we introduce

another field variable � located in the center of each cell.

We define

�ðx; t ¼ 0Þ ¼ d; ð5Þ

where d is the signed distance from the position x to the

leaf front. Hence the leaf edge is determined by the set

fxj�ðx; tÞ ¼ 0g. This function � naturally defines grid

points that are inside and outside of the leaf; the grid

point is inside if � > 0, and outside if � < 0. We denote

the leaf region by � and the region outside of the leaf by

�c. The computation of the pressure and velocity vari-

ables is confined to the leaf region. However, the com-

putation of � will be on the entire grid D.

Update of theVelocity Field

The crucial part in implementing our mathematical

model is to solve (3) and (4) for the velocity field over

time. Its numerical computation can be further divided

into four steps. First, the size of the grid cell and the

Euler-integration time step should be chosen to

ensure the numerical stability. Second, the values of

pressure and velocity which are outside of the leaf but

adjacent to the grid cells inside of the leaf must be

specified to satisfy the boundary conditions. Third,

equation (3) is enforced by taking the divergence of

equation (4) which then yields a Poisson equation for

the pressure. Finally, we update the velocity field using

the finite difference method.

Boundary Conditions

As we decompose the whole domain D into two regions,

the velocity and pressure values of the grid cells outside

of and away from the leaf edge are set to zero. For those

near the edge, the values are set to be consistent with the

boundary conditions. These boundary conditions deter-

mine the velocity of the expanding leaf front. Intuitively,

as the leaf grows, the growth velocity should not change

in the direction normal to the boundary. Hence the

outflow boundary conditions are used:

@

@n
un ¼ 0

@

@n
u� ¼ 0 ð6Þ

where un is the component of velocity in the exterior

normal direction and u� is the component of velocity in

the tangential direction to the boundary. These bound-

ary conditions set the normal derivatives of un and u� to

zero at the boundary. Thus, the leaf will grow outward

with the same speed and in the same direction. In our

model, we assume the air dynamics has a negligible

effect on the leaf growth. The values of pressure on the

boundary cell are set to zero.

Discretization inTime

When solving the evolution of the velocity over time, we

need to perform the time discretization on the equations

(3) and (4). In order to maintain the stability of our

numerical algorithm, stability conditions must be im-

posed on the step size �t and the cell size �x� �y. We use

an adaptive stepsize control based on the result from24
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by selecting �t for the next time step so that each of the

following is satisfied:

�t ¼ � min

�
Re

2

�
1

@x2
þ 1

@y2

��1

;
@x

umaxj j ;
@y

vmaxj j

�
: ð7Þ

The factor 0 < � � 1 is a safety factor, jumaxj and jvmaxj
are the maximal absolute values of the velocities inside

the leaf domain �. The restriction of �t umaxj j must be

smaller than the cell size is called Courant-Friedrichs-

Lewy (CFL) condition. Under such a restriction no grid

point can move further than a cell size in one time step

size. Beginning at time t¼ 0 with initial values of velo-

city, time is increased by �t in each step until the final

time is reached. At time step nþ 1 the field variables are

computed based on their values at previous time step n.

We rewrite the equation (4) in discretized form as

unþ1 ¼ Un � �trpnþ1

where

U ¼ uþ �t

�
1

Re
�u� ðu � rÞu� Luþ 1

3Re
rL

�
: ð8Þ

In equation (8), the velocity field at time step nþ 1 can be

computed once the corresponding pressure is known.

The problem can be solved by using the Laplacian

operator to couple the pressure changes to the velocity

changes in the continuity equation (3), which gives

r2p ¼ 1

�t
ðr �U � LÞ ð9Þ

where r2p is the Laplacian of the pressure.

From equation (9), we form a symmetric and positive

definite linear system AP ¼ b where P is the vector of

unknown pressures inside the leaf region, b is the vector

formed by the values of the right-hand side of (9), and A

is the discrete Laplacian matrix. We note that the irregu-

lar shape of the leaf only affects the positions of the

nonzero entries but does not destroy the symmetric

structure of A. Hence, the linear system can be solved

efficiently using the conjugate gradient method.25

After the new pressures at time step nþ 1 have been

determined, the velocities in each cell are computed by

(8). The new velocity field can then be used to update the

distance function � to capture the expanding leaf edge.

Leaf Expansion

As we have described above, the initial shape of the leaf

is given by the zero level set of the signed distance

function. This function � is also called a level set func-

tion which was first introduced by Osher and Sethian20

to capture moving front. Since then, this topologically

robust interface capturing method has been used to

track interfaces in a wide variety of applications. The

main idea of the level set method is to embed the moving

interface as the zero level set (cf. (5)). Once we have

known the velocity at which the front moves, we will

update � using the following equation

�t þ ðu � rÞ� ¼ 0; ð10Þ

so that the leaf front will always be equal to the zero

level set of �. Here the velocity u is given by the growth

velocity computed from (8). In order to get a more

accurate update, we use the upstream second-order

accurate approximation26 for the convective term

ðu � rÞ� above.

The evolution equation (10) for � does not keep � as

an exact distance function over time. Steep or flat

gradients can develop in � as it moves. A common

technique to fix this problem is to reinitialize �.16 Denote

the level set function representing the current leaf edge

by �0; i.e., the zero level set of �0 gives the leaf edge. To

construct a function � whose zero level set is the same as

�0 and that it is the signed distance function, we solve

the following problem to steady state:

�t ¼ S"ð�0Þð1 � jr�jÞ where S"ð�Þ ¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ "2
p :

ð11Þ

Thus, the distance values away from the interface will

converge to jr�j ¼ 1.

In our computation, the value of " is set as the size of

one grid cell. Typically, three to four time steps would

be sufficient. Afterwards, the contour of the leaf edge

will be passed to our standard ray tracer for rendering

one frame of the current shape of the leaf.

Verification andResults

The growth model developed in this paper has been

tested on the growth of two types of leaves, Xanthium

and golden pothos. For the former, we carry out a

quantitative analysis of our model; we simulate the

growth of a Xanthium leaf using biological growth

data and then compare the simulated results with the

experiments. For the latter, we give a qualitative study;
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we simulate the growth of a golden pothos leaf for

three days. The simulation is presented as an ani-

mation available at http://www.curumin.uwater-

loo.ca/�r5wang.

The spatial and temporal growth of a plant leaf is not

uniform in general, and hence a realistic growth model

needs to be able to capture these effects. In19, an experi-

mental study of the growth of the Xanthium leaves was

carried out. The absolute (global) rates of growth in area

were recorded daily. However, the rates are plotted

against the leaf plastochron index (LPI), defined as:

LPI ¼ log Ln � log 10

logLn � log Lnþ1
; ð12Þ

where n denotes the nth oldest leaf of a Xanthium plant

and Ln is the length of leaf n (measured in mm). The LPI

of a leaf essentially indicates the age of that leaf relative

to the time when it was 10 mm long. In this study, it has

been observed that various parts of the leaf’s lamina

expand at different rates, depending on their distance

from the tip and the age of the leaf. The relative growth

rate is lowest at the tip of the leaf and increases in the

basal direction, thus conforming to the basipetal pattern

of expansion.

The relative rates of increase in area at different parts

of a Xanthium leaf were obtained by marking experi-

ments17 on the leaf surface. We simulate the growth of

the Xanthium leaf for LPI¼ 0.74, 2.64, and 4.18. The

relative (local) grow rates from19 are used to define the

field variable L in (3). We compare the absolute growth

rates of our simulated results with the experimental

findings given in19.

As shown in Table 1, our simulated results are in good

agreement with the experimental results. We remark

that computer solutions are less predictable than the

physical phenomena. Exact quantitative match would

be unrealistic since our model does not use all the

biological information (e.g. light, temperature, chloro-

phyll concentration, etc). One also needs to take into

account the noise in measurement, especially for small

values. Nevertheless, as observed in Table 1, the simu-

lated results are in the same order of magnitude as the

experimental results. Furthermore, we also observe the

temporal variation in the growth rates. The absolute

growth rate in area is slower when the leaf is in the early

developmental stage (LPI¼ 0.74) and then increases as

the leaf gets bigger (LPI¼ 2.64); the rate eventually

decreases as the leaf becomes mature (LPI¼ 4.18).

Our model is also able to capture the nonuniform

spatial growth of the leaf. We start with the given shape

of the Xanthium leaf when LPI¼ 2.64. Then we simulate

the growth process until the length of the leaf is

approximately equal to the length when LPI¼ 4.18.

The initial and the final length to width ratios are

calculated and compared as shown in Table 2. We

note that the growth in width is faster than the growth

in length.

We have used our model to produce an animation

simulating the leaf growth of golden pothos, also known

as the ‘devil’s ivy’, which is a hardy and fast growing

trailing houseplant with heart shape leaves. The simula-

tion sequence corresponding approximately to a growth

period of three days is shown in Figure 2.

Each frame of the animation illustrating the growth of

a plant leaf was rendered using ray tracing. The techni-

que used to create the frames is similar to the one

applied by Bloomenthal27 and Hanrahan and Kruger.4

It consists of mapping the leaf contour to a polygon. The

colors of the polygon outside the leaf’s contour are

considered ‘transparent’ by the ray tracer.

Since we do not have the experimental data on the

relative growth rate of area of golden pothos leaves, we

defined the values of the field variable L in (3) depend-

ing on the distance from the leaf edge. This choice of

growth rates is based on28, in which Erickson concluded

that leaf expansion is largely isotropic, though the

margins are somewhat anisotropic, and the direction

of maximum expansion in the anisotropic growth

was approximately parallel with the margin. Erickson

also demonstrated that there was a general tendency for

the center of the leaf to have higher rates than the

margin.

The key parameters in the implementation are defined

as follows: Reynolds number Re ¼ 1000, � ¼ 0:5. For the

LPI Experimental data Simulation result

0.74 0.34 0.61
2.64 6.6 6.20
4.18 10.7 10.3

Table1. The absolute growthrates of aXanthium
leafwhen LPI= 0.74, 2.64, and 4.18

LPI Experimental data Simulation result

2.64 1.353 1.353
4.18 1.146 1.164

Table 2. The length towidthratios of aXanthium
leaf growing fromLPI= 2.64 to LPI= 4.18
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size of the domain D, we take nx� ny ¼ 200 � 200 for

the numerical computation of the Xanthium leaves and

nx� ny ¼ 500 � 500 for the rendering frames.

Conclusion

We presented a mathematical model for simulating the

growth of a plant leaf. We find that the experimental

results, after comparing the modelled Xanthium leaf

with the original one,19 are consistent with the biological

observations of the expansion in leaf morphology. Con-

sequently we are confident that the presented model is

operational and can be found useful in related applica-

tions such as botanical simulations. Our research is but

an early step in developing a biophysically-based sys-

tem of simulating plant growth. The difficulty in study-

ing this problem stems from the lack of experimental

data on spatial distribution of growth velocity and

magnitude of the variable. In this paper, we have

developed a model for simulating the growth in area

of plant leaves. In the future, we plan to extend it to

include the growth in thickness as well, which is an

important parameter for biophysical rendering ap-

proaches. We will refine our model by integrating

more physical or biological factors once the availability

of the experimental data on those factors are resolved.
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