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Abstract—The overall shape of a sand grain can be defined by
two morphological properties, namely sphericity and roundness,
and it is largely determined by soil-formation and weathering
processes. In this paper, we investigate the effects of these properties
on the visible and near-infrared reflectance of sand-textured soils
characterized by the presence of iron oxides. Our investigation is
supported by computer simulations performed using the SPLITS
(Spectral Light Transport Model for Sand) model and considering
actual sand characterization data. Our findings indicate that the
influence of grainmorphologymay vary considerably depending on
the distribution patterns of iron oxides present in sand-textured
soils. These minerals may occur as pure particles, as contaminants
mixed with the grain parent material, or as coatings. Since these
distribution patterns are also significantly affected by soil-formation
and weathering processes, we believe that the combined influence
of sand-grain shape and iron-oxide distribution patterns on the
reflectance of sandy landscapes should be carefully taken into
account in the retrieval of information about their mineralogy and
environmental history.

Index Terms—Iron oxide, morphology, reflectance, roundness,
sand, shape, simulation, sphericity, transportation, weathering.

I. INTRODUCTION

T HE spectral reflectance of sandy landscapes, such as dune
fields found in deserts, coastal regions, and inland areas

originally occupied by lake or sea beds, is significantly affected
by the size and shape of their constituent grains as well as the
presence of iron oxides (e.g., hematite, goethite, and magnetite).
These minerals may occur as pure particles [1], as contaminants
mixed with the parent material (e.g., quartz) [2], or as coatings
within a kaolinite or illite matrix [3]. These morphological and
mineralogical characteristics, in turn, are directly associated
with the different formation processes of these sand-textured
soils (Fig. 1), notably through wind or water transport [3]–[5].
Accordingly, their spectral signature can be employed to infer
information about their mineralogy and environmental history
[6], [7]. Moreover, the integration of this spectral data with
computer modeling techniques can also lead to the accurate
prediction of future changes in sandy terrains [8].

Previous remote sensingworks in this area have focused on the
effects of grain size on the reflectance of sand-textured soils [7],
[9], [10]. In addition, when computer simulations are employed
to investigate these effects, the grains are often represented by
perfect spheres [7], [9], [11]. However, it has been suggested that
not only size variations, but also shape variations need to be taken
into account in investigations linking the spectral signature of
sand-textured soils to their formation processes and mineralogi-
cal characteristics [1], [3], [5], [12], [13].

The overall shape of a sand grain can be defined in terms of two
main properties: sphericity (or eccentricity) and roundness (or
angularity) [14]–[16]. While the former refers to the degree to
which a grain approaches a spherical shape, the latter refers the
curvature of its corners and edges [12] and it is associated with
the large-scale roughness (or smoothness) of its surface [17], [18].
The small-scale roughness of a sand grain, on the other hand, is
associatedwith its surface’smicro-texture [17], [18], which can be
masked by the presence of iron-oxide coatings [19], [20].

Transportation of sand grains either by wind or water may
involve rolling, suspension, and saltation [14], a processs in
which the grains are temporarily suspended by the wind before
impacting the sand soil surface [21], [22]. Accordingly, spheric-
ity and roundness properties are directly connected to the
formation history of a sand deposit as well as the immediate
conditions at the site of deposition [12]. For example, particles
with high sphericity roll faster than particles with low sphericity
[14]. Similarly, particles with low sphericity may also behave
differently from particles with high sphericity during suspension
since the ratio of the surface area to the volume of a particle is
directly associated with its response to lifting forces [12].
Moreover, the roundness of the corners and edges may indicate
the rigor of the last stage of transportation [16]. Increasing rigor
increases fracturing and chipping, which, in turn, may increase
sphericity and reduce roundness [14].

Roundness can also be affected by abrasion and solution
processes [14], [17]. While the former reduces roundness, the
later increases it. A high degree of roundness is often an indicator
of gentle conditions of wear and it is usually observed in sand
deposits formed through gentle tractional transportation [16].
Hence, water-transported grains tend to have much smoother
and uncoated surfaces than wind-transported (aeolian) grains
due to continuous dissolution processes [3], [21]. Aeolian grains,
on the other hand, tend to have rougher surfaces due to the
saltation process.

In this paper, which is an extended and updated version of a
conference presentation [23], we investigate how variations in
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the sphericity and roundness of sand grains may alter the visible
and near-infrared spectral signature of sandy landscapes charac-
terized by distinct iron-oxide distribution patterns. Iron oxides,
such as hematite, magnetite, and goethite, can have a strong
influence in the visible and near-infrared reflectance of sand-
textured soils [1], [9], [10]. In fact, the presence of these minerals
can be used to map the distribution of nutrients and heavy metals
in these soils on the basis of the surface reflectance of these
terrains [6]. Although this work focus on roundness and sphe-
ricity properties, it also includes observations related to grain
size. Our investigation is based on in silico controlled experi-
ments performed using a predictive simulation set-up and sup-
ported by actual sand measured data. Within this set-up, we
assign different values to specific parameters, particularly those
associated with the size, sphericity, and roundness of the sand
grains, and analyze their spectral effects while keeping the other
parameters constant. It is worth nothing that such controlled
experiments are usually difficult to be performed under actual
laboratory conditions [6], [13], [24].

The remainder of this paper is organized as follows. In
Section II, we outline morphological concepts and definitions
relevant for this work. In Section III, we briefly describe
the simulation framework employed in our investigation. In
Section IV, we present the baseline spectral datasets used in
our simulations. In Section V, we report our findings and
discuss their theoretical and practical implications. Finally, in
Section VI, we close the paper and outline directions for future
research in this area.

II. MORPHOLOGICAL CONCEPTS AND DEFINITIONS

Soil grains are divided into three classes, or soil separates,
namely sand, silt, and clay, from the largest to the smallest
particles, respectively [25]. The relative masses of each soil
separate are compared to determine the texture of a soil sample.
A sand-textured soil, henceforth referred to as sand soil, contains
at least 85% sand-sized particles.

Different methods can be used to quantify the roundness ( )
and the sphericity ( ) of a sand particle. The sphericity values
considered in this work were obtained by Vepraskas and Casel

[26] using the sphericity measure proposed by Riley [27]. Its
definition is based on the projection of the particle onto a plane
and it is given by

where and correspond to the radius of the largest
inscribed circle and the radius of the smallest circumscribed
circles, respectively, as shown in Fig. 2. Note that a sphere has a
sphericity equal to 1.

The roundness values considered in our investigation were
also obtained by Vepraskas and Casel [26]. They employed a
method for assessing grain roundness that consists in visually
comparing images of individual grains to images of grains of
varying roundness depicted in reference charts [24], [28]. These
charts are derived from the Krumbein chart [12], which contains
images of grains with a known roundness computed using the
method proposed by Wadell [14]. According to Wadell
[14]–[16], the roundness of a sand grain can be quantified as
the average radius of curvature of the grain corners relative to
the radius of the maximum sphere that can be inscribed in the
grain [14]. This quantification can be expressed as

where corresponds to the radius of curvature of a corner as
shown in Fig. 3. Note that a sphere has a roundness equal to 1.

Fig. 2. Projection of a sand grain onto a plane used in the computation of Riley
sphericity [27]. The radii and correspond to the radius of the largest
inscribed and the radius of the smallest circumscribed circles, respectively.

Fig. 1. Photograph showing a coastal sandy landscape affected by wind and
water transport processes. Inset: microscope photograph depicting sand grains
with distinct iron-oxide contents.

Fig. 3. Projectionof a sand grain onto a plane used to compute its roundness using
Wadell’s method [14], [16]. The radii and correspond to the radius of the
largest inscribed circle and the radius of curvature of a particle corner ,
respectively.
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III. SIMULATION FRAMEWORK

The modeled directional-hemispherical reflectance curves
depicted in this work were computed using the SPLITS (Spectral
Light Transport Model for Sand) model [29]. This model em-
ploysMonteCarlomethods and ray optics techniques to simulate
light interactions with individual sand grains distributed in the
pore medium (air or water). SPLITS can be run online via a
model dissemination framework [30] that enables researchers to
specify simulation parameters (e.g., angle of incidence, spectral
range, and sand characterization data) through a web interface
(Fig. 4), and receive customized simulation results via e-mail.
Hence, researchers can fully reproduce our results and extend our
investigation to other experimental conditions. It is worth noting
that although SPLITS provides bidirectional readings, one can
obtain directional-hemispherical quantities [31] (provided by our
online system [32]) by integrating the outgoing light (rays) with
respect to the collection hemisphere [33], [34]. Similarly, bihe-
mispherical quantities can be calculated by integrating the
bidirectional scattering distribution function (BDF) values with
respect to the incident and collection hemispheres [29]. For
completeness, in this section, we briefly review aspects of the
SPLITS formulation that are directly related to themain theme of
our investigation, and outline the datasets used in our simula-
tions.We remark that a detailed description of the SPLITSmodel
can be found elsewhere [29].

The SPLITS model takes into account the individual morpho-
logical characteristics of the sand grains. More specifically, their
sphericity and roundness are normally distributed, with their
mean and the standard deviation derived from data provided by
Vepraskas and Cassel [26], and constrained to fall within their
respective ranges derived from the same data (Table I). Their
size, represented by their diameter is distributed according to a
piecewise log-normal distribution as suggested by Shirazi et al.
[25], i.e., is normally distributed. This distribution is
characterized by two parameters, namely the geometric mean
particle diameter and its standard deviation , which are
functions of the soil texture. That is, the percentages of the sand-
sized, silt-sized, and clay-sized particles are employed to com-
pute the respective geometric mean diameters and standard
deviations of these particles (Table II) using a particle size
distribution provided by Shirazi et al. [25].

Within the SPLITS formulation, an individual particle consists
of a core and an optional coating. The core represents the grain
parent material, which in terrestrial sand soils is typically a
material like quartz or calcite, with quartz (employed in this
investigation) being the most common [9]. The core is modeled
as a prolate spheroid with a semiminor axis and a semimajor
axis . The length of is given by , while the length of is
given by . It is also worth noting that SPLITS is not limited
to the use of prolate spheroids. Optionally, the core may be
coated by amineral layer whose thickness is proportional to the
particle size, i.e., , where is the relative coating
thickness. The relative coating thickness, in turn, is given by

, where and correspond to the coating refer-
ence thickness and the coating reference diameter, respectively.
These reference parameters are derived from coating data pro-
vided in the literature [3]. We remark that the coating layer

consists of iron oxides embeded in a kaolinite (employed in this
investigation) or illite matrix.

The interfaces between the core, coating, and surrounding
medium are modeled using randomly oriented facets of equal
area to simulate a rough surface. The orientations of these facets
are distributed such that the dot product between the facet normal

and the interface normal is given by , where
is normally distributed with zero mean and standard deviation

given by . This standard deviation was chosen so that
< for 95% of the facets [29]. Additionally, the facet

normals are constrained so that > . Hence, the particle
roundness is used to control the large-scale roughness of the
interfaces and, consequently, the spatial distribution of the light
interacting with them.

IV. BASELINE SPECTRAL DATASETS

As the baseline references for our investigation, we computed
modeled reflectance curves (over the 400–1000 nm region) for
four selected sand samples with distinct mineralogical charac-
teristics whose reflectance curves weremeasured byRinker et al.
[35]. These measured curves were made available in the U.S.
Army Topographic Engineering Center (TEC) database [35].
These sand samples are originally from a red (hematite-rich)
dune in Australia (TEC #10019201), a dune in Saudi Arabia
(TEC#13j9823), amagnetite-rich site in Peru (TEC#10039240),
and a dike outcrop in California (TEC #19au9815). Based on
their descriptions [35], we assumed that the presence of clay-
sized particles, organic matter, and water (moisture) were negli-
gible in these samples. Besides the parameters associated with
the shape and size of the particles (Tables I and II), the mean
values used for porosity (42.5% [36]) and the relative coating
thickness ( μ [37]) were also obtained from data
provided in the literature. The remaining parameter values
employed to compute the modeled spectral reflectance curves
for these samples are given in Table III.

In the measurements performed by Rinker et al. [35], reflected
radiance is collected from the normal direction and compared to
the reflected radiance of a white reference sample. Based on the
experimental set-up described by Rinker et al. [35], we inferred
that the illumination geometry may be appropriately represented
using a hemispherical light source. The measured data provided
by Rinker et al. [35] is thus in the form of a hemispherical-
directional reflectance factor [39]. It is important to note, how-
ever, that the hemispherical-directional reflectance factor is
mathematically equivalent to the directional-hemispherical re-
flectance [39]. We remark that this radiometric quantity, in turn,
can be computed by casting rays from an angle of incidence equal
to 0 and collecting all rays reflected into the upper hemisphere
using a virtual spectrophotometer [33].

As it can be observed in the graphs presented in Fig. 5, the
modeled curves show a close agreement with their measured
counterparts, specially considering that we employed the same
average values for key model input parameters such as porosity,
coating thickness, roundness, and sphericity. Besides the visual
inspection of the modeled curves, we also computed the root-
mean-square errors (RMSEs) with respect to their measured
counterparts: 0.0172, 0.0166, 0.0095, and 0.0120 for the
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Australian, Saudi, Peruvian, and Californian samples, respec-
tively. These RMSE values below 0.03 (the empirical value
usually associatedwith good spectral reconstruction [40]) further

indicate a good agreement between the modeled and measured
curves. Accordingly, we employed these modeled curves as the
control (baseline) curves in our in silico experiments, which

Fig. 4. Web interface for the SPLITS model available through the Natural Phenomena Simulation Group Distributed (NPSGD) framework [30]. Through this web
interface [32], researchers can configure physical parameters and execute light transport simulations involving different sand samples.
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consisted in computer simulations to assess the effects of varia-
tions in sand-grain morphology on the visible and near-infrared
spectral signature of sandy landscapes characterized by distinct
iron-oxide distribution patterns.

V. RESULTS AND DISCUSSION

Initially, we performed simulations to verify the influence of
particle size on the reflectance of the sand samples. The results of
these simulations presented in Fig. 6 are in agreement with
experimental observations [10] as well as theoretical investiga-
tions [7], [9] reported in the literature showing that grain size
increases lead to reflectance decreases. These simulation results,
albeit not the main focus of our investigation, confirmed the
predictive capabilities of our in silico experimental framework.

We then proceeded to the simulations involving roundness
and sphericity variations, the central component of our investi-
gation. The results of these simulations presented in Figs. 7 and 8
suggest that the reflectance of sand soils is sensitive to variations

in the sand-grain shape, and this sensitivity tends to be higher in
spectral regions characterized by higher reflectance values, i.e.,
toward the end of the visible spectrum and the near-infrared
domain where the extinction coefficients of the iron oxides have
lower values [41]–[43]. These results also suggest that the
spectral signature of sand soils tend to be less sensitive to

TABLE III
PARAMETERSUSED TOOBTAIN THEMODELED SPECTRALREFLECTANCECURVES FOR THE

AUSTRALIAN, PERUVIAN, AND CALIFORNIAN TEC SAMPLES [35]

The parameter corresponds to the ratio between the mass fraction of hematite
to the total mass fraction of hematite and goethite represented by . The
parameter represents the mass fraction of magnetite. The texture of
the samples is described by the percentages (%) of sand ( ) and silt ( ) particles.
The particle type distributions considered in the simulations are given in terms
of the percentages (%) of pure ( ), mixed ( ), and coated ( ) grains. It is
assumed thatmagnetite appears as pure particles in sand soils characterized by the
presence of this mineral [4], [38].

TABLE I
MEAN, STANDARD DEVIATION AND RANGE VALUES FOR SPHERICITY AND ROUNDNESS

PROVIDED BY VEPRASKAS AND CASSEL [26]

TABLE II
GEOMETRIC MEAN PARTICLE DIAMETERS (GIVEN IN MM) AND STANDARD DEVIATIONS

FOR SOILS WITH VARIOUS MIXTURES OF SAND-SIZED PARTICLES ( ) AND SILT-SIZED
PARTICLES ( ) CONSIDERED IN OUR SIMULATIONS

The diameters and standard deviations for sand-sized particles ( and ,
respectively) and silt-sized particles ( and , respectively) are provided by
Shirazi et al. [25]. Note that the presence of clay-sized particles is assumed to be
negligible in the sand samples considered in this work.

Fig. 5. Measured and modeled reflectance curves for the four sand samples
employed in this investigation. From top to bottom: Australian, Saudi, Peruvian,
and Californian samples. Measured curves are provided in the U.S. Army
Topographic Engineering Center (TEC) database [35]. These samples are
originally from a red (hematite-rich) dune in Australia (TEC #10019201),
a dune in Saudi Arabia (TEC #13j9823), a magnetite-rich site in Peru
(TEC #10039240), and a dike outcrop in California (TEC #19au9815).
The modeled curves were obtained using the SPLITS model [29], [32] and the
sand characterization data provided in Tables I–III.
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variations in roundness (Fig. 7) than to variations in sphericity
(Fig. 8).

The more prominent impact of sphericity observed in our
in silico experiments is consistent with the fact sphericity varia-
tions tend to have a more substantial influence on the probability
of light absorptionby thegrains,which, in turn, hasa larger impact
in the overall reflectance of sand soils [6], [10]. Such an influence
on light absorption is associatedwith changes in thepath lengthof
light travelling within the sand grains and their coatings [29].

Roundness variations, on the other hand, tend to have a more
substantial influence on the spatial distribution of light reflected
by surface features associated with the large-scale roughness of
the sand grains [17], [18].

Besides these quantitative differences, our in silico experi-
ments also indicate significant qualitative differences in the
effects of roundness and sphericity on the visible and near-
infrared spectral signature of sand soils. More specifically,
reflectance changes associated with increased roundness tend
to be independent on how the iron oxide particles are distributed

Fig. 6. Simulations of reflectance changes associated with changes in the size of
the sand-sized and silt-sized particles. From top to bottom: Australian, Saudi,
Peruvian, and Californian samples. Size variations are accounted for in terms of
their geometric mean particle diameters ( and , respectively, given in ) as
listed in Table II. The solid lines correspond to the baseline reflectance curves
computed using the data depicted in Table III.

Fig. 7. Simulations of reflectance changes associated with minimum, maximum,
and mean roundness ( ) values provided in Table I. From top to bottom:
Australian, Saudi, Peruvian, and Californian samples. The solid lines correspond
to the baseline reflectance curves computed using the data depicted in Table III.
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within the sand samples (Fig. 7), with a roundness increase
leading to a minor reflectance decrease. Reflectance changes
associated with sphericity variations, however, may depend on
the distribution patterns of these minerals (Fig. 8). We remark
that the iron oxides may be present in pure form, mixed with the
parent material or as a coating formed on the sand grains.
Accordingly, examining the sphericity experiments more close-
ly, one can note that the reflectance of a sand sample may
decrease with increased sphericity when the iron oxides are
mixedwith the parentmaterial (Fig. 8, two top graphs).However,

one can also note that it may increase with increased sphericity
when the iron oxides are distributed in pure form or as coatings
(Fig. 8, two bottom graphs).

In order to further assess the influence of particle type
distribution and mitigate any bias from considering samples
with different iron-oxide contents, we performed two additional
sets of simulations. In the first one, we considered a modified
Australian sand sample with the same particle type distribution
employed in the Peruvian and Californian samples ( ,

, and given in Table III). We then computed its
reflectance curves associated with the minimum, maximum,
and mean sphericity values given in Table I. The results
presented in Fig. 9 show a sphericity increase leading to a
reflectance increase, i.e., the same behaviour observed for the
Peruvian and Californian samples (Fig. 8, two bottom graphs)
which have distinct iron-oxide contents, but the same iron-
oxide distribution pattern (particle type distribution) employed
in the modified Australian sample.

In the second set of additional simulations, we considered a
modified Californian sand sample with the same particle type
distribution employed in the Australian and Saudi samples
( , , and given in Table III). Again, we
computed the reflectance curves for this sample considering the
minimum, maximum, and mean sphericity values given in
Table I. The results presented in Fig. 10 show a sphericity
increase leading to a reflectance decrease, i.e., the same behav-
iour observed for the Australian and Saudi samples (Fig. 8, two
top graphs) with distinct iron-oxide contents, but with the same
iron-oxide distribution pattern (particle type distribution) em-
ployed in the modified Californian sample. Hence, the results
presented in Figs. 9 and 10 further indicate that reflectance tends
to decrease with increased sphericity when the iron oxides are
mixed with the parent material, and increase with increased
sphericity when the iron oxides are distributed as pure or coated
particles, regardless of the dominant form of iron-oxide present
in the samples.

In summary, our simulations demonstrate that not only the
size, but also the shape of sand grains can have noticeable effects
on the reflectance of sand soils. In fact, our simulations show
that the representation of sand grains by spheres may lead to

Fig. 9. Modeled reflectance curves for a modified Australian sand sample
obtained considering the minimum, maximum, and mean sphericity ( ) values
provided in Table I. For this modified sample, the particle type distribution
employed in the simulation of the Australian sample ( , , and

given in Table III) was replaced by the particle type distribution employed
in the simulation of the Peruvian and Californian sample ( , , and

given in Table III).

Fig. 8. Simulations of reflectance changes associated with minimum, maximum,
and mean sphericity ( ) values provided in Table I. From top to bottom:
Australian, Saudi, Peruvian, and Californian samples. The solid lines correspond
to the baseline reflectance curves computed using the data depicted in Table III.
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significant deviations from the actual spectral signature of sand
soils.We remark thatwhile a sphere has sphericity and roundness
equal to 1, actual sand particles have sphericity and roundness
values markedly distinct from 1. Moreover, although both
sphericity and roundness contribute to these effects, the former
can have a more substantial influence on the visible and near-
infrared reflectance of sand soils.

Our in silico experiments also indicate that the influence of
sphericity may vary depending on how the iron oxides are
distributed within the sand soils. Since the shape of sand grains
and the distribution patterns of iron oxides (in pure form, mixed,
or as contaminants) are directly connected with the geomorphol-
ogy of sandy landscapes, their interplay needs to be carefully
taken into account in the development of new soil investigation
methodologies, particularly those based on the integration of
remote sensing data with predictive computer modeling.

Finally, it is important to note that the influence of sand-grain
morphology on the reflectance of sand soils can be significantly
masked by the presence of water and organic matter. We
remark, however, that our investigation focused on sand sam-
ples whose water and organicmatter contents can be considered
negligible. We also remark that although a given sand soil may
be completely depleted of water and organic matter in their
current deposition stage, these materials may have participated
in its formation process. As a result, these materials, notably
water, may have left clues of their earlier presence imprinted on
the morphology of its constituent grains [3], [4], [14]. Viewed
in this context, we highlight that reflectance variations associ-
ated with distinct grain shape properties, albeit less pronounced
than those elicited by water and organic matter, should not be
overlooked. Furthermore, while reflectance variations caused by
the presence of water and organic matter are monotonic [10],
[44], reflectance variations associated with distinct grain shape
properties can present distinct qualitative trends depending on
the iron oxide contents and distribution patterns of a given soil as
demonstrated in thiswork.Accordingly, we believe that the close
examination of such spectral signature changes can potentially
lead to new avenues of research involving the mineralogy and
environmental history of terrestrial an extra-terrestrial sandy
landscapes.

VI. CONCLUSION

In this paper, we have investigated the effects of sand-grain
morphology on the visible and near-infrared reflectance of sand
soils with different mineralogical characteristics. This investiga-
tion was performed using a predictive simulation framework
supported by sand characterization data provided in the scientific
literature. Using this framework,we performed controlled in silico
experiments in which we assessed the interplay between key
morphological properties (size, roundness, and sphericity) and
mineralogical characteristics (iron-oxide content and particle type
distribution) with respect to the spectral signature of sand soils.

Although in situ experiments are required to assess the full
applicability of ourfindings, we believe that they provide a sound
basis for future investigations in this area. To allow the full
reproduction and extension of our in silico experiments, wemade
the light transport model (SPLITS) and the sand characterization
data employed in this work openly available for online use [32].

As future work, we plan to investigate the effects of soil
porosity on the spectral signature of sandy landscapes under
different illumination and moisture conditions. Moreover, we
believe that the interdisciplinary research methodologies can
result in significant advances not only in the retrieval of texture
and mineralogical information from sand soils, but also in the
current understanding of the origins of terrestrial and extrater-
restrial sandy landscapes. Therefore, we also intend to enable the
extension of our investigations to extraterrestrial sand soils by
incorporating to our online simulation set-up their specific
mineralogical characteristics such as the presence of different
parent materials (e.g., basalt found in Martian sands [22]).
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