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A Compact Framework to Efficiently Represent
the Reflectance of Sand Samples

Bradley W. Kimmel, Student Member, IEEE, and Gladimir V. G. Baranoski, Senior Member, IEEE

Abstract—The authors have recently proposed a model, based
on Monte Carlo methods, to simulate light interaction with sand.
In this paper, principal component analysis and regression tech-
niques are applied to yield a compact analytical representation of
the spectral reflectance signatures produced by the model. This
analytical formulation compares well with the original model and
is appropriate for applications demanding interactive rates. Ex-
amples are provided comparing the original model to the proposed
formulation for three hypothetical sand samples. The effect of
water content on reflectance is demonstrated for these samples.
Additionally, examples are provided comparing the original and
proposed models for three sand samples from the U.S. Army
Topographic Engineering Center spectral database.

Index Terms—Nonlinear regression,
analysis (PCA), reflectance, sand.

principal component

I. INTRODUCTION

AND is an ubiquitous material found in diverse and re-

mote environments, from Earth deserts and coastal re-
gions to extraterrestrial landscapes. Accordingly, airborne or
satellite-based equipment is often used to measure the spectral
signatures of these sandy areas in order to infer their intrin-
sic properties without the need for a field survey. Predictive
simulations of light interaction with sand can provide a sub-
stantial contribution to these efforts. Notably, their application
in conjunction with traditional measurement procedures can
accelerate the hypothesis generation and validation cycles of
remote-sensing research frameworks aimed at this widespread
type of soil.

In remote-sensing studies involving soils, principal compo-
nent analysis (PCA) and regression techniques are often applied
to classify satellite images by using spectral data associated
with different soil targets [2]-[5], to assist spectral-band se-
lection for multispectral remote sensor systems [6], [7], and to
reduce the dimensionality of hyperspectral data sets [8], [9],
including those associated with soils [10], [11]. They have also
been used to establish the spectral similarity among soil sam-
ples and soil types, which is related to major soil constituents,
such as mineral (e.g., iron oxides and nitrate) and organic-
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Fig. 1. Photograph of sand showing a close-up of sand particles.

matter contents, and assist the prediction and analysis of these
soil constituents [12]-[14].

Recently, the authors introduced a SPectral LIght Transport
model for Sand, called SPLITS [1]. The model employs Monte
Carlo techniques to simulate light interaction with a sand
sample and may be used to predict the reflectance of the sample,
given its physical and mineralogical characteristics. The goal
of the research presented in this paper, which is an extended
and upgraded version of a conference presentation [15], is to
provide an analytical approximation to the SPLITS model. This
proposed representation for the model makes use of PCA and
regression techniques to yield a compact alternative to SPLITS.

II. BACKGROUND

Sand is a particular type of soil composed of particles
immersed in a medium of air and water (the pore space).
According to the system developed by the U.S. Department of
Agriculture [16], at least 85% of these particles are between
0.05 and 2 mm, and the remainder have a smaller size (Fig. 1).

The purpose of the SPLITS model is to simulate the spectral
and spatial properties of light interaction with sand, given its
physical and mineralogical characteristics [1]. For this paper,
we concern ourselves with the spectral aspect.

Within the SPLITS modeling framework, a sand medium is
represented by randomly oriented and sized spheroidal particles
distributed throughout the half-space below a plane bound-
ary [1]. The parameters to the model include the mass concen-
trations of the iron oxides hematite, goethite, and magnetite:
three major factors contributing to soil reflectance; as well as
the amount of water present in the sand, expressed as the degree
of saturation, which is the fraction of pore space occupied
by water [17]. Additional parameters describe the geometrical
arrangement of the mineral constituents. These include the
fraction of particles by volume that consist of a single mineral
(pure), of a mixture of the parent material and an iron oxide
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Fig. 2. Comparison between a traditional ray-tracing approach and that employed by the SPLITS model [1] is depicted. (a) For a traditional ray-tracing approach,
the particles are explicitly stored. (b) For the SPLITS model, an incident ray first interacts with the extended boundary. If the path enters the medium, a new particle
is generated randomly. Light interaction with that particle is simulated. (c) If the path is not absorbed in the particle, it eventually exits the particle. The particle is
discarded and a new one is generated. (d)—(f) This process is repeated. (g) If the intersection with the generated particle lies above the extended boundary, the ray
instead interacts with the boundary. (h) Ray may be internally reflected, or it may be scattered out of the medium. In the latter case, the process terminates.

(mixed), and of the parent material coated by an iron oxide
mixture (coated). In the case where coated particles are present,
another parameter describes the thickness of the coating relative
to the size of the particle.

The Monte Carlo simulation consists in tracing a path from
an incident beam of light, through a simulated sand medium,
until the ray is either scattered or absorbed. However, rather
than storing the locations of individual sand particles, the par-
ticles are generated as required during the simulation (Fig. 2).
Light interaction with the particle is simulated, and the particle
is subsequently discarded.

As is typical with Monte Carlo simulations, many trials (on
the order of 10® paths in this case) are required to determine
the overall light-transport behavior of a given sample. Such
simulations can take much time, which makes experimentation
with the model difficult for applications that demand high
interactive rates. For such applications, it is therefore preferable
to have an analytic alternative to this model.

III. METHODOLOGY

The analytical formulation for the proposed approximation
to SPLITS is derived as follows. Physical and mineralogical
data representing a set of 3000 hypothetical sand samples (the
training set) were generated randomly from within the domain
of the SPLITS model. The model is then applied to yield the
corresponding spectral reflectance curves for those samples.
For this framework, the reflectance curves were sampled at
16 wavelengths, regularly spaced between 400 and 700 nm.
Specifically, the directional hemispherical reflectance [18] was
evaluated using an incident angle of 0°. Other incident angles
could be used as required for particular applications.

PCA was performed on these reflectance curves
(Section III-A), yielding a small set of basis spectra along
with the principal components associated with each sample.
Regression analysis (Section III-B) was then performed to
obtain a predictor mapping the physical and mineralogical
data characterizing a given sand sample to the corresponding
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Results derived from PCA of the reflectance spectra simulated by the

SPLITS model. (Top) First four basis spectra. (Bottom) Standard deviation
(v/A;) of the reflectance data in the direction of the eigenvectors u; derived
from the analysis, indicating that four eigenvectors are sufficient to capture all
but a negligible portion of the variance in the simulated spectra.

TABLE 1
STATISTICS CHARACTERIZING THE ROOT-MEAN-SQUARED ERRORS
(RMSE) BETWEEN SPECTRAL REFLECTANCE SIGNATURES SIMULATED
BY THE SPLITS MODEL AND THOSE PREDICTED BY THE
PROPOSED ANALYTICAL FORMULATION

Training Set  Test Set
Mean 0.0067 0.0069
95tk Percentile  0.0153 0.0158
Maximum 0.0785 0.0478
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Fig. 4. RMS error (across all wavelengths sampled) is shown against each of the model parameters varied. (Upper row) (left to right) Total iron oxide
concentration by mass (. ), concentration of magnetite by mass (9, ), relative concentration of hematite versus goethite by mass (71, ), and degree of saturation
(S)- (Lower row) (left to right) Relative thickness of grain coating (h'), fraction of pure particles by mass (4;,), fraction of mixed particles by mass (f,, ), fraction

of coated particles by mass (u7,).
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Comparisons between the directional hemispherical reflectance [18] as simulated by the SPLITS model and the approximation presented in this paper for

three hypothetical sand samples. The asterisks represent the reflectance computed using the SPLITS model. The solid line indicates the approximation using PCA

and regression analysis.

principal components. The results of these analyses are then
combined to yield an analytical formulation for the spectral
reflectance signatures simulated by the SPLITS model.

A. PCA

PCA [19] was performed on these reflectance curves. The
spectral curves from the training set were aggregated into an
¢ x n matrix R, where / is the size of the training set and
n = 16 is the number of wavelengths sampled per set. The
rows r; of R correspond to the samples in the training set.
To keep the reconstruction process simple, the sample mean
was not subtracted. The analysis consists in performing an
eigendecomposition of R!R. This yields R'R = UAU®, where
A is the diagonal matrix with the descending eigenvalues A; of
R!R along the main diagonal and U is an orthogonal matrix
having the corresponding eigenvectors u; for its columns.

The eigenvectors u; denote the directions of decreasing vari-
ance in the training set, with u; being the direction of maximum
variance [19]. The eigenvalues )\; indicate the variance in the
direction of u;. This property allows us to ignore variance
beyond a given threshold by projecting the data into the space
spanned by the first k eigenvectors ug, . . ., uy, for some k < n.
That is, we reexpress the data as

6]

f‘i = U}érz

where Uy, is the matrix formed by dropping all but the first k&
columns of U [19].

This allows us to represent the spectral curves generated by
the SPLITS model using a small set of basis spectra (four were
found to be sufficient to represent over 99.9% of the variance
in the spectral reflectance data from the training set) along with
the principal components r; associated with each sample (see
Fig. 3).

B. Regression

To relate the principal components 7; of a training datum to
its corresponding physical characteristics, a regression analysis
[19] was performed. The physical and mineralogical character-
ization data x; describing the sample were first mapped to an
m-dimensional feature space via a function ¢(x) in the com-
ponents of x. For this framework, ¢ maps the characterization
data x to the cubic monomial basis in the components X;.
That is, given the components x;, i = 1,...,d, of x, ¢(x) has
components consisting of the values x;,x;, X;, for every triple
(i0,91,12) satisfying 0<ig<i; <ip<d, where xo=1. Linear
regression was then performed in this feature space to yield an
m x k matrix W. This gives a nonlinear predictor

2)
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Fig. 6. Effect on the directional hemispherical reflectance [18] of the three hypothetical sand samples is depicted as the degree of saturation is adjusted. The

curves were obtained using the analytical approach presented in this paper.
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Fig. 7. Comparisons are shown depicting the reflectance of three sand samples from the TEC spectral database, the corresponding reflectance predicted by
the SPLITS model, and the results of the proposed analytical approximation of the SPLITS model. (Left) Magnetite-rich beach sand from central Peru (TEC
#10039240). (Middle) Dune sand from Saudi Arabia (TEC #13j9823). (Right) Sample from a dike outcrop in San Bernardino county, California (TEC #13au9815).

for the principal components corresponding to a given set of
characterization data.

C. Summary

By combining (1) and (2), we obtain a predictor for the
corresponding spectral curve

r~ UpyW'é(x).

For a set of physical data corresponding to a given sand sample,
therefore, the analytical approximation to the SPLITS model
is evaluated by applying the predictor function obtained via
regression to that data, yielding principal components. These
principal components are multiplied by the corresponding basis
spectra and summed to obtain the reflectance spectrum of the
sand sample in question.

IV. RESULTS

To evaluate the accuracy of this approximation for a given
sample, the spectral reflectance curves produced by the SPLITS
model are compared to those given by the proposed analytical
formulation. This comparison was performed for all of the
samples in the training set, yielding a mean root-mean-squared
(rms) training error of 0.0067.

In addition, characterization data corresponding to an in-
dependent set of 600 hypothetical sand samples (the test set)
were generated randomly within the domain of the SPLITS
model. The earlier evaluation was also performed using this
test set, yielding a mean rms error of 0.0069. In comparison
with results obtained by applying similar techniques to recon-
struct the spectral signatures of other natural materials [20],

these relatively low error values indicate that the analytical
approximation provides a good spectral reconstruction of the
curves generated from the original model. This aspect is further
illustrated by a summary of the rms errors presented in Table I.

The rms errors for the individual samples in the test set are
shown in Fig. 4, shown against each of the model parameters
that were varied. Note the lack of pattern in the errors as a
function of any model parameter. Plots demonstrating typi-
cal comparisons between the reflectance curves simulated by
SPLITS with those provided by the proposed formulation are
shown in Fig. 5. These indicate that the proposed formulation
accurately represents the reflectance curves simulated by the
SPLITS model.

Fig. 6 shows the variation in the directional hemispherical
reflectance [18] as the water content is varied. The water
content, expressed as the degree of saturation—the fraction of
the pore space occupied by water, is varied from zero to one.
This behavior is consistent with the original model [1] and with
the qualitative reflectance properties of sand reported in the
literature [21].

SPLITS, as originally formulated, was evaluated [1] using
several sand samples from the U.S. Army Topographic Engi-
neering Center (TEC) spectral database [22]. Fig. 7 shows this
comparison for three samples, along with the corresponding
reflectance curve predicted by the analytical formulation pro-
posed in this paper.

V. CONCLUSION

We have derived a compact analytical formulation for the
spectral directional hemispherical reflectance signatures of sand
samples. It is based on PCA and regression analysis of SPLITS:
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a light-transport model recently introduced by the authors [1].
The proposed formulation compares well with the original
model, as indicated by several comparisons using hypothetical,
as well as real, sand samples. The analytical formulation is
efficient enough to use when high interactive rates are required.

Although not specifically addressed in this paper, the po-
tential exists for efficient land-surface models to be used for
the retrieval of soil physical properties, given remotely sensed
reflectance data. This possibility is suggested by Pauwels et al.
[23] and corresponds to inversion of the framework described in
this paper. Although several numerical techniques are suitable
for model inversion, this can be a highly nontrivial process [24].

In future work, we intend to extend the techniques described
in this paper to support other types of soil, such as those that
include organic compounds. Another important line of research
would involve extending the framework described in this paper
to include other portions of the electromagnetic spectrum. This
would allow the framework to capture important absorption fea-
tures of water and other mineral constituents. Additionally, al-
though the framework proposed describes a formal relationship
between the model parameters and the basis spectra, attributing
a physical meaning to these eigenvectors would allow one to
estimate more readily the principal components associated with
a given sand sample. This is also an important avenue for
future research. We also plan to expand these techniques to sup-
port the prediction of the bidirectional reflectance distribution
function [18].
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