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Reducing the Dimensionality of Plant
Spectral Databases
Ian E. Bell and Gladimir V. G. Baranoski

Abstract—Ground-based measurements of plant reflectance
and transmittance are essential for remote sensing projects
oriented toward agriculture, forestry, and ecology. This paper
examines the application of principal components analysis (PCA)
in the storage and reconstruction of such plant spectral data. A
novel piecewise PCA approach (PPCA), which takes into account
the biological factors that affect the interaction of solar radiation
with plants, is also proposed. These techniques are compared
through experiments involving the reconstruction of reflectance
and transmittance curves for herbaceous and woody specimens.
The spectral data used in these experiments were obtained from
the Leaf Optical Properties Experiment (LOPEX) database. The
reconstructions were performed aiming at a root-mean-square
error lower than 1%. The results of these experiments indicate
that PCA can effectively reduce the dimensionality of plant spec-
tral databases from the visible to the infrared regions of the light
spectrum, and that the PPCA approach can further maximize
the accuracy/cost ratio of the storage and reconstruction of plant
spectral reflectance and transmittance data.

Index Terms—Leaf, measurements, plant, principal component
analysis (PCA), reflectance, spectral databases, transmittance.

I. INTRODUCTION

VEGETATION is arguably the most important remote
sensing target, since it is a natural resource on which all

human and animal life depends [1]. The applications of plant
remote sensing include projects oriented toward agriculture,
forestry, and ecology. Viewed in this context, ground-based
measurements of plant reflectance and transmittance are
essential, since these spectral quantities are directly related
to leaf biochemistry and water status. In comprehensive ex-
periments, these measurements are made in conjunction with
measurements of leaf biochemical constituents, such as lignin,
proteins, and cellulose, as well as pigment and water content.
These data allow the application of inversion procedures [2]
on spectral data obtained from spaceborne platforms [3]–[5]
in order to remotely estimate leaf biochemical content. The
major processes involved in the terrestrial ecosystems, such
as photosynthesis and foliar decomposition, can be related to
these constituents [6].

These measurements, as outlined above, may involve several
aspects such as the wavelength of the incident light, the illu-
minating angle, and the viewing geometry [7]. These measure-
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ments can be stored in a spectral database, with multiple entries
for each specimen representing each individual species. Some-
times, it is also desirable to store data for a number of specimens
of each species in the database, to allow a quantitative spec-
tral analysis of species variability [8]. Furthermore, the number
of entries in this database grows as new measurements for dif-
ferent species become available. Eventually, however, its size
might become impractical for many applications due to the large
number of species found in nature.

Plant spectral data can also be extracted from computer
models of plant reflectance and transmittance [9]. In this case,
modeling spectral curves for many combination of parameters,
such as chlorophyll content, water content, thickness, etc.,
will consume large amounts of storage space. In theory, one
could save storage space by storing these parameters instead
of the curves obtained using a computer model. However, the
computation of such curves is highly time consuming [7]. For
applications that demand high interactivity rates, such data
usually need to be precomputed, stored offline, and quickly
accessed online.

Clearly, the key aspects in the design of plant spectral
databases are compactness and low reconstruction error. Prin-
cipal components analysis (PCA) [10] techniques can be used
to achieve these goals. PCA involves a mathematical procedure
that transforms a number of possibly correlated variables into a
number of uncorrelated variables called principal components
[11]. In some application areas, it is also called the (discrete)
Karhunen–Loève transform [12].

PCA is widely used in many areas, e.g., signal pro-
cessing, computer graphics, statistics, colorimetry, and neural
computing. In remote sensing, it is mainly applied to the
classification and interpretation of satellite images by using
spectral data associated with different targets [13]–[18], in-
cluding regions of vegetation [19], [20]. Furthermore, Price
[17], [21]–[23] has proposed a procedure for identifying the
independent spectral variability of reflectance spectra of crops
and soils, which applies PCA as an intermediate refinement
step. This procedure was applied to data obtained from satellite,
aircraft, and ground measurements. The crop species used in
the ground-based experiments were corn, soy, winter wheat,
sunflower, and alfalfa.

Another application of PCA in remote sensing involves spec-
tral band selection for multispectral remote sensor systems.
Wiersma and Landgrebe [12] have described an approach that
depends on a principal component analysis of a collection of
spectra, combined with results from a classification procedure.
Recently, Price [24], [25] used his identification procedure to
perform spectral band selection for satellite image data.
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In this paper, we examine the application of PCA to reduce the
dimensionality of plant leaf spectral databases used to store re-
flectance and transmittance spectra obtained from ground mea-
surements. Vrhel et al. [26] analyzed the possibility of repre-
senting spectral data of Munsell chips and various natural mate-
rials (including plant leaves) with a set of basis functions deter-
mined using PCA. Their investigations, however, were aimed at
colorimetry applications and were limited to reflectance data in
the 390–730-nm range. Grossman et al. [27] used PCA in con-
junction with stepwise multiple linear regression techniques to
examine the statistical relationships among a number of foliar
biochemicals. They indicated a reduction of the dimensionality
of plant reflectance data in the 800–2498-nm range using PCA.

The investigation presented in this paper extends the ob-
servations made by Grossman et al. [27], focusing on the
compactness and low reconstruction error of plant spectral
databases. It covers the visible (400–700 nm), near-infrared
(700–1300 nm), and infrared regions (beyond 1300–2500
nm) of the light spectrum, and includes reflectance and
transmittance data. Moreover, besides the application of
PCA techniques, a novel piecewise PCA approach (PPCA)
is proposed. This biologically based algorithm allows us to
further maximize the storage savings and to minimize the
reconstruction errors associated with plant spectral data. These
findings are supported by experiments in which measured
and reconstructed spectral curves for different specimens are
compared.

II. PCA

The main purpose of PCA is to reduce the dimensionality of
a dataset consisting of a large number of interrelated variables,
while retaining as much as possible the variations presented in
the dataset [11]. In this section we outline the idea behind this
approach, and describe the technique used in our work to im-
plement it. The reader interested in a more detailed description
of the PCA approach is referred to various comprehensive texts
on this subject [11], [28].

Generally, we have a set of measurements (e.g., reflectances
of specimens) and variables (e.g., wavelengths). We arrange
the data in a matrix , and we wish to represent each set
of measurements using components. The PCA iden-
tifies so-called modes, being defined as the -vectors ,

corresponding to the directions in a -dimensional
space where the measurements exhibit the maximum variance.
In other words, the first mode corresponds to the direction
of maximum variance, the second mode corresponds to the
direction of maximum variance uncorrelated to , and so on
[29].

Singular value decomposition (SVD) is a technique widely
used to implement this analysis. Although there are techniques
that present a lower time complexity [30], we choose to use
SVD in this work because of its numerical stability. Numerous
variants of the SVD algorithm exist [10], [11]. We apply here
the version proposed by Pratt [31], which is used in the numer-
ical computing system Matlab [32]. This technique consists on
forming the singular value decomposition of

(1)

where and are orthogonal matrices, and
is a real, nonnegative, and diagonal matrix. The columns of

are the left singular vectors, and the columns
of are the right singular vectors. The di-

agonal of contains the so-called singular values , where
. When is symmetric and semidefinite,

the singular values are the eigenvalues of ; otherwise, the
singular values are the square roots of the eigenvalues of .

Consider a plant spectral reflectance dataset given by a ma-
trix , where each row contains the reflectance spectrum of a
given species, whose values with respect to the sample wave-
lengths are stored column by column. The goal is to reduce
the dimensionality of , i.e., the PCA approach is applied to
the entire dataset, rather than to each specimen’s spectrum. The
computation of the principal components of is given by

SVD

diag

where represents the singular values, the basis of prin-
cipal components (as column vectors), and the coordinates
relative to the basis (as row vectors). The same procedure can be
applied to a plant spectral transmittance dataset represented by a
matrix , where the rows represent transmittance spectra for
different species, and the columns represent the sample wave-
lengths.

Once the data matrices have been decomposed, the basis
components of can be stored. This basis matrix may be as
large as the original dataset . However, since the goal is to
reduce the dimension of the data, one usually chooses a reduced
number of components, , and stores the smaller basis

(the first columns of ). The selection of can be
made according to the fraction of the singular value sum ac-
counted for by the first singular values (see Fig. 4). The re-
construction of the spectral data, i.e., the formation of a
matrix , is given by

It can be proven that the representation given by PCA is an op-
timal linear dimension reduction technique in the mean-square
sense [11], although of course once the basis is chosen, any other
basis spanning the same PCA subspace will have the same data
compression or noise reduction capabilities.

III. PIECEWISE PRINCIPAL COMPONENTS ANALYSIS (PPCA)

Experiments [33], [34] show that the reflectance and trans-
mittance of plant leaves are relatively low in the visible (Vis)
region of the light spectrum, and that absorptance dominates.
Most of the absorption in this region is caused by pigments
present in the leaf tissue [2]. As pointed out by Devlin and Baker
[35], the chlorophylls are by far the most important and abun-
dant of these pigments. The near-infrared (NIR) region, how-
ever, is characterized by a lack of absorption and high values
for reflectance and transmittance [33], while in the infrared (IR)
region (beyond 1300–2500 nm), the absorption is controlled by
the water content [2].
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Fig. 1. Measured (LOPEX) and reconstructed (PCA) spectral curves for a fresh soy leaf (Soja hispida). Curves were reconstructed using 1, 5, and 9 components.

These well-defined regions suggest that the use of an adaptive
PCA approach may result in more compactness and lower re-
construction errors. In other words, instead of an integral appli-
cation of PCA over the whole light spectrum, we can perform a
piecewise application of PCA, in which each piece corresponds
to one of the three regions (Vis, NIR, and IR). Since the effec-
tiveness of the PCA method depends on the representativity of
the reflectance or transmittance data used in the singular value
decomposition, applying PPCA to matrices for the Vis, NIR,
and IR regions yields different components than applying PCA
to a matrix for all three regions. After eliminating components
that contribute little to the overall reflectance or transmittance
curves, reconstructing a particular curve with PPCA, therefore,
gives pieces for each region that may not join smoothly at region
boundaries. Although it would be possible to use a constrained
PPCA method to ensure smooth joins, we found the disconti-
nuities to be noticeable only with a few species, and only when
using minimal numbers of components.

IV. DATA

In our experiments, we considered chlorophyllous leaf speci-
mens whose spectral data are available in the Leaf Optical Prop-
erties Experiment (LOPEX) database [6]. This database con-
sists of leaf samples representing woody and herbaceous species
that were obtained from trees and crops near the Joint Research
Centre in Ispra, Italy. Spectra were originally scanned in 1-nm
steps, but the wavelength interval was averaged over 5 nm to
reduce noise. The measurements considered fresh and dry indi-
vidual leaves and optically thick samples (stacked leaves plus
needles or powders).

The matrices and described earlier were formed
using respectively the reflectance and transmittance spectra of
all individual fresh leaves stored in the LOPEX database. For
the illustration of the reconstruction experiments, we consid-
ered a soy (Soja hispida) specimen representing an herbaceous
species, and a poplar specimen (Populus canadensis) rep-
resenting a woody species. In order to increase our scope
of observations, we also considered an iris specimen (Iris
germanica L.) whose reflectance and transmittance curves
have magnitudes markedly different from soy and poplar.
For completeness, we also included summaries of the results

obtained considering spectral data for all species represented in
the LOPEX database, and derived from measurements on fresh
individual leaves, dry individual leaves, fresh stacked leaves,
and dry stacked leaves.

In order to be consistent with the plant remote sensing litera-
ture, we use the root-mean-square-error (RMSE) measure in our
experiments. As one increases the number of coefficients used
in the reconstruction of the spectral curves, the RMSE of these
curves decreases. The goal is to obtain the best compromise be-
tween the number of coefficients and the RMSE. Therefore, we
need to select a threshold RMSE value to be used as reference in
the evaluation of our results. Jacquemoud et al. [3] state that in
terms of plant reflectance and transmittance reconstruction, an
RMSE less than or equal to 0.01 indicates a reasonably accurate
reconstruction. Hence, we select this value as the upper bound
for our RMSE comparisons.

V. RESULTS

Figs. 1–3 illustrate the application of PCA to the reconstruc-
tion of spectral reflectance and transmittance curves for the three
specimens considered. The original curve, and reconstructions
with 1, 5, and 9 principal components are shown (intermediate
numbers of components are possible, but omitted here to avoid
clutter). A visual inspection of these curves shows that there is
good qualitative agreement between the original and the recon-
structed curves. Although reconstruction errors vary from one
specimen to another, by increasing the number of principal com-
ponents, one can obtain an asymptotic reduction of the error as
illustrated in Fig. 4.

Tables I and II show the number of components required to
reconstruct spectral curves within specified RMSE bounds. For
PPCA, numbers of components are given for the three charac-
teristic regions (Vis, IR, and NIR). For PCA, numbers of com-
ponents are given for the whole spectrum of interest, i.e., the
union (all) of the these regions. From the figures presented in
these tables, it can be clearly observed that the number of prin-
cipal components varies from one species to another and from
one region to another.

The iris, poplar, and soy examples used in this paper were
chosen to be representative of our results with the LOPEX data-
base. To demonstrate that the PCA and PPCA methods are vi-
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Fig. 2. Measured (LOPEX) and reconstructed (PCA) spectral curves for a fresh poplar leaf (Populus canadensis). Curves were reconstructed using 1, 5, and 9
components.

Fig. 3. Measured (LOPEX) and reconstructed (PCA) spectral curves for a fresh iris leaf (Iris germanica L.). Curves were reconstructed using 1, 5, and 9
components.

Fig. 4. RMS errors associated with the reconstruction (PCA) of (left) spectral reflectance curves and (right) spectral transmittance curves for soy, poplar, and iris
leaves, within the visible to infrared (400–2500 nm) region of the light spectrum, and using different numbers of PCA components.

able over all LOPEX data, we computed RMSE errors for 1-, 5-,
9-, and 20-components PCA and PPCA. Tables III, IV, VII, and
VIII show the results for all LOPEX leaf reflectances (fresh, dry,
stacked fresh, and stacked dry). Tables V and VI show the re-
sults for all LOPEX transmittances (fresh and dry). The PPCA
method was applied to the Vis, NIR, and IR spectral regions,
while PCA was applied to the union of these regions (all). Larger

numbers of components clearly reduce the average and max-
imum errors in all cases. The PPCA method, by targeting shorter
wavelength intervals, gives smaller errors than the PCA method,
which is over all wavelengths. For example, in Table III, to
achieve a maximum RMSE error of 0.0038 we must use nine
components with PCA, but fewer than five components would
suffice for PPCA on the Vis or IR regions.



574 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 3, MARCH 2004

TABLE I
NUMBER OF PRINCIPAL COMPONENTS REQUIRED TO RECONSTRUCT SPECTRAL

REFLECTANCE CURVES FOR SOY (S), POPLAR (P), AND IRIS (I) LEAVES

CONSIDERING DIFFERENT RMSE BOUNDS. THE PCA METHOD APPLIES TO

THE VISIBLE-TO-INFRARED DATA (ALL). THE PPCA METHOD APPLIES TO THE

THREE REMAINING CATEGORIES (VIS, NIR, AND IR)

TABLE II
NUMBER OF PRINCIPAL COMPONENTS REQUIRED TO RECONSTRUCT SPECTRAL

TRANSMITTANCE CURVES FOR SOY (S), POPLAR (P), AND IRIS (I) LEAVES

CONSIDERING DIFFERENT RMSE BOUNDS. THE PCA METHOD APPLIES TO

THE VISIBLE-TO-INFRARED DATA (ALL). THE PPCA METHOD APPLIES TO THE

THREE REMAINING CATEGORIES (VIS, NIR, AND IR)

TABLE III
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 83 LOPEX FRESH LEAF REFLECTANCE SPECTRA

TABLE IV
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 75 LOPEX DRY LEAF REFLECTANCE SPECTRA

TABLE V
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 83 LOPEX FRESH LEAF TRANSMITTANCE SPECTRA

This aspect is also illustrated in Figs. 5 and 6, which show
comparisons involving the reconstruction of spectral reflectance
and transmittance curves for the iris specimen applying PCA
and PPCA, with the former using five components for the vis-
ible-to-infrared spectrum and the latter using five components
for each region (Vis, NIR, and IR). The error bars used in these
graphs represent the quantitative differences (magnified by a
factor of ten) between the original and reconstructed curves at

TABLE VI
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 75 LOPEX DRY LEAF TRANSMITTANCE SPECTRA

TABLE VII
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 83 LOPEX STACKED FRESH LEAVES REFLECTANCE SPECTRA

TABLE VIII
AVERAGE AND MAXIMUM PCA (ALL) AND PPCA (VIS, NIR, AND IR) RMSE

FOR 76 LOPEX STACKED DRY LEAVES REFLECTANCE SPECTRA

various wavelengths. We used the iris specimen because, from
the species considered in our experiments, it presented the lower
sconvergence rate (Fig. 4). A visual inspection of these graphs
shows that considerably lower reconstruction errors can be ob-
tained using the proposed PPCA approach.

VI. DISCUSSION

In this paper, we examined the application of techniques,
PCA and PPCA, to reduce the dimensionality of plant spectral
databases. Instead of storing the full spectra of plant leaves,
one needs to store only a certain number of components and a
basis, which requires only a fraction of the memory space. For
example, each raw reflectance in the LOPEX database requires
2101 floating-point values; however, Table I shows that for soy,
three-component PCA suffices for a RMSE of 0.01, thus three
floating-point values (once the SVD basis has been stored). This
is a dramatic reduction of data, especially for databases of many
reflectances. Using the PPCA method, soy would require only
two, one, and two components for each region, respectively, to
achieve the same RMSE of 0.01. If all components are stored,
this gives five floating-point values, which is a substantial
reduction from the original data, but not as small as the three
floating-point values for PCA. There are, however, alternative
interpretations of this table that show PPCA can be the preferred
method.

In applications where very low RMSE tolerances must be
met, PPCA can compete with PCA directly in terms of total
number of components. Table II shows this trend with iris trans-
mittance for a RMSE of 0.001, where 19 components are re-
quired for PCA, and an equal for PPCA. As
another example in Table I, poplar reflectance with an RMSE
tolerance of 0.002 requires 12 components for PCA, but only

components for PPCA. Further investigation of
quantization error at the bit level may reveal other advantages to
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Fig. 5. Measured (LOPEX) and reconstructed [(left) PCA and (right) PPCA] reflectance curves for a fresh iris leaf (Iris germanica L.). PCA curves were
reconstructed using five components, and PPCA curves using five components for each region (Vis, NIR, and IR). Error bars represent the differences between the
curves, magnified by a factor of ten.

Fig. 6. Measured (LOPEX) and reconstructed [(left) PCA and (right) PPCA] transmittance curves for a fresh iris leaf (Iris germanica L.). PCA curves were
reconstructed using five components, and PPCA curves using five components for each region (Vis, NIR, and IR). Error bars represent the differences between the
curves, magnified by a factor of ten.

the PPCA approach. Even with floating-point values, however,
the flexibility of PPCA is an asset.

For some applications, e.g., infrared remote sensing [36],
there may be different RMSE requirements for each spectral
region. For example, if we consider soy reflectance (Table I),
with an RMSE of 0.001 in the infrared, but only 0.01 in the
other regions, the PCA method needs 18 components. The
PPCA method, however, can meet the infrared RMSE tolerance
with eight components, and require only two and one compo-
nents, respectively, for the visible and near-infrared regions, a
total of 11 components. PPCA is, therefore, more adaptable
when the spectral regions differ in significance.

These storage savings depend on the number of principal
components considered, which in turn depends on the level of
accuracy expected for the reconstruction of the original curves.
Both techniques examined in this paper allow a significant re-
duction of the dimensionality of plant spectral databases, while
preserving the information represented by the reflectance and
transmittance data. The proposed PPCA technique, however,
presents a higher accuracy/cost ratio.

Besides contributing to a reduction in the computational over-
head associated with the manipulation of such datasets, these

techniques may improve the quality of the spectral informa-
tion stored, since the data not contained in the selected prin-
cipal components may be mostly due to noise in the measure-
ments. Another benefit of these methods is that new reflectance
or transmittance data may be incorporated into the database
without repeating the SVD calculation: it is only necessary to
project the new data onto the principal component basis to de-
termine its coordinates, a simple matrix multiplication.

In closing, with increasing amounts of plant spectral data
readily available and distributed through the Internet, it is nec-
essary to find efficient storage methods like PCA and PPCA.
The PCA method, although not new, may be considered as
an approach to compactly storing large databases of plant
spectral data, and the novel PPCA method provides more ef-
ficient compression, especially when error tolerances vary for
different spectral regions. The field researcher or forensic sci-
entist with a hand-held computing device of limited storage
would benefit greatly from such compact databases and effi-
cient algorithms. Furthermore, the PCA and PPCA methods
support fast addition of new spectra to the database and can
be adapted to other remote sensing targets such as soils and
natural waters.
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