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Abstract— Peripheral cyanosis, the purple or blue coloration
of hands and feet, can represent the initial signs of life-
threatening medical conditions such as heart failure due to
coronary occlusion. This makes its effective detection relevant
for the timely screening of such conditions. In order to reduce
the probability of false negatives during the assessment of pe-
ripheral cyanosis, one needs to consider that the manifestation
of its characteristic chromatic attributes can be affected by a
number of physiological factors, notably cutaneous pigmenta-
tion. The extent to which cutaneous pigmentation can impair
this assessment has not been experimentally investigated to
date, however. Although the detection of peripheral cyanosis
in darkly-pigmented individuals has been deemed to be im-
practical, data to support or refute this assertion are lacking
in the literature. In this paper, we address these issues through
controlled in silico experiments that allow us to predictively
reproduce appearance changes triggered by peripheral cyanosis
(at different severity stages) on individuals with distinct levels of
cutaneous pigmentation. Our findings indicate that the degree
of detection difficulty posed by cutaneous pigmentation can be
considerably mitigated by selecting the appropriate skin site to
perform the observations.

Index Terms— cyanosis, skin, pigmentation, reflectance, pre-
dictive simulation.

I. INTRODUCTION

Peripheral cyanosis refers to the purple or blue coloration

of extremities (hands and feet) that becomes apparent when

oxygen demand exceeds supply in the dermal tissues [1],

[2], [3]. This may result from peripheral circulatory failure

(e.g., due to reduce cardiac output), peripheral vasocon-

striction (e.g., due to hypothermia), or peripheral vascular

occlusion (e.g., due to arterial thrombosis) [2], [3], [4].

In most cases, it is associated with the presence of high

levels of deoxygenated hemoglobin (dexoyhemoglobin) in

these tissues [1], [4]. However, it may be also prompted

by the presence of abnormal amounts of one or more

types of dysfunctional hemoglobins, namely methemoglobin

(MetHb), sulfhemoglobin (SulfHb) and carboxyhemoglobin

(CarboxyHb), in the blood stream [2], [3].

Since peripheral cyanosis may represent the initial signs of

serious medical conditions that can lead to a life-threatening

situation (e.g., a myocardial infarcation) [2], [3], [4], its

effective detection by health-care professionals can play an

important role in preventing such an outcome. To achieve
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Fig. 1. Photographs depicting a cyanotic and normal skin appearances.
Leftmost photograph: a cyanotic palmar fingertip (courtesy of James Heil-
man, MD). Remaining photographs, from left to right: dorsal and palmar
surfaces of fingers belonging to a lightly pigmented and a darkly pigmented
specimen, respectively.

this objective, however, it is necessary to account for physi-

ological factors that can affect the manifestation of peripheral

cyanosis (Fig. 1 (leftmost)). Among these factors, one can

highlight an individual’s level of cutaneous pigmentation. In

fact, it has been often claimed that the detection of peripheral

cyanosis in darkly-pigmented individuals is problematic [1],

[2], [4]. However, as stated by Baernstein and Elmore [2],

data to support or refute this assertion are not readily

available in the literature.

This lack of data may be explained by a number of

practical limitations associated with in vivo experiments. For

example, in order to obtain a sufficiently comprehensive

volume of data to verify this claim, one would need a variety

of test cases that may not be safe to elicit on live subjects. In

addition, these test cases would likely involve variations on

selected biophysical variables, while other variables would

be kept fixed during the different measurement instances.

Such controlled in vivo experimental set-up might be difficult

to attain during “wet” laboratory procedures involving live

subjects.

In this paper, we systematically investigate the extent to

which cutaneous pigmentation can impair the detection of

peripheral cyanosis. In order to overcome the in vivo testing

limitations outlined above, we performed controlled in silico

experiments. These experiments were carried out using a

first-principles light transport model for human skin, known

as HyLIoS (Hyperspectral Light Impingement on Skin) [26],

and biophysical data provided in the literature. More specifi-

cally, we compared cyanotic appearance changes elicited on

individuals with distinct levels of cutaneous pigmentation.

Besides considering different stages of peripheral cyanosis

severity, we also examine its manifestation at skin sites

with distinct pigmentation characteristics, namely the dorsal

surface of the fingers and the palmar fingertip (Fig. 1).

Our findings indicate that the putative masking effects of
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TABLE I

HYLIOS PARAMETERS EMPLOYED IN THE SPECIFIC CHARACTERIZATION OF THE SKIN TISSUES FOUND IN THE DORSAL SURFACE AND IN THE PALMAR

FINGERTIP OF THE FINGERS BELONGING TO THE LIGHTLY (LP) AND DARKLY (DP) PIGMENTED SPECIMENS CONSIDERED IN THIS INVESTIGATION.

Parameter Dorsal Surface Palmar Fingertip References
LP DP LP DP

Stratum Corneum Thickness (cm) 0.001 0.002 0.013 0.026 [5], [6], [7], [8], [9]
Stratum Granulosum Thickness (cm) 0.0046 0.0015 0.0123 0.006 [9], [10]
Stratum Spinosum Thickness (cm) 0.0046 0.0015 0.0123 0.006 [9], [10]
Stratum Basale Thickness (cm) 0.0046 0.0015 0.0123 0.006 [9], [10]
Papillary Dermis Thickness (cm) 0.02 0.023 0.02 0.023 [11], [12]
Reticular Dermis Thickness (cm) 0.125 0.2 0.125 0.2 [11]
Stratum Granulosum Melanosome Content (%) 0.0 5.0 0.0 0.25 [13], [14], [15]
Stratum Spinosum Melanosome Content (%) 0.0 5.0 0.0 0.25 [13], [14], [15]
Stratum Basale Melanosome Content (%) 1.0 5.0 0.15 0.25 [13], [14], [15]
Stratum Granulosum Colloidal Melanin Content (%) 0.9 5.0 0.06 0.25 [13], [14], [16]
Stratum Spinosum Colloidal Melanin Content (%) 0.9 5.0 0.06 0.25 [13], [14], [16]
Stratum Basale Colloidal Melanin Content (%) 0.9 5.0 0.06 0.25 [13], [14], [16]
Stratum Basale Melanosome Dimensions (µm × µm) 0.41× 0.17 0.69× 0.28 0.41× 0.17 0.69× 0.28 [17]
Melanosome Eumelanin Concentration (g/L) 32.0 50.0 32.0 50.0 [18], [19]
Melanosome Pheomelanin Concentration (g/L) 2.0 4.0 2.0 4.0 [18], [19]
Dermal Oxyhemoglobin Fraction (%) 90.0 90.0 90.0 90.0 [20]
Functional Hemoglobin Concentration in Blood (g/L) 147.0 147.0 147.0 147.0 [21]
Papillary Dermis Blood Content (%) 0.5 0.5 0.5 0.5 [22], [23], [24]
Reticular Dermis Blood Content (%) 0.2 0.2 2.0 2.0 [22], [23], [25]

cutaneous pigmentation, particularly on darkly-pigmented

individuals, can be considerably minimized by selecting

observation sites more susceptible to the chromatic variations

associated with peripheral cyanosis.

II. IN SILICO EXPERIMENTAL SETUP

In the investigation described in this paper, we employed

HyLIoS to compute directional-hemispherical reflectance

curves (Figs. 2 and 4) for selected skin specimens subjected

to different stages of peripheral cyanosis severity. We note

that the predictive capabilities of this model have been

extensively evaluated through quantitative and qualitative

comparisons of its outcomes with actual measured data [26].

Within the HyLIoS’ geometrical-optics formulation, a ray

interacting with a given skin specimen can be associated

with any selected wavelength within a spectral region of

interest. Hence, this model can provide reflectance curves

with different spectral resolutions. For consistency, however,

we considered a spectral resolution of 5 nm in all curves

depicted in this work, which were computed using a virtual

spectrophotometer [27]. In their computation, we considered

an angle of incidence of 10◦ and 10
6 sample rays.

To enable the full reproduction of our in silico exper-

imental results, we made HyLIoS available online [28]

via a model distribution system [29]. This system enables

researchers to specify experimental conditions (e.g., angle of

incidence and spectral range) and specimen characterization

parameters (e.g., pigments and water content) using a web

interface [28], and receive customized simulation results.

In addition, the supporting biophysical data (e.g., refractive

index and extinction coefficient curves) used in our investi-

gation are also available online [30].

In our in silico experiments, we considered two skin

specimens with distinct levels of cutaneous pigmentation,

henceforth referred to as lightly pigmented and darkly pig-

mented, respectively. In addition, for each specimen, we

considered two skin sites, namely the dorsal surface of their

index finger and the corresponding palmar fingertip. The

datasets used in the specific characterization of these sites

are provided in Table I, while the dataset containing the

remaining parameters used in the general characterization

of these sites is provided in Table II. The selection of

values for these datasets was based on physiologically valid

ranges provided in related references, which are also listed

in Tables I and II.

The datasets mentioned above were employed to compute

the baseline reflectances for the four selected skin sites in

their normal state. In order to compute their reflectances

associated with different stages of peripheral cyanosis sever-

ity, we considered the combined impact of the dermal

oxygenation fraction (given in %) and the reticular dermis

blood content (given in % and denoted by vrdblood) on the

manifestation of peripheral cyanotic chromatic attributes

[31], [32]. More specifically, the values originally assigned

to these parameters (provided in Table I) were replaced by

the values depicted in Table II. We note that the former

parameter can be represented by 100− fdeoxy, where fdeoxy
(given in %) indicates the fraction of deoxyhemoglobin to

the total amount of functional hemoglobins present in the

dermal tissues. We also remark that, for vrdblood variations,

we considered ranges provided in the related literature [24].

Finally, since cyanotic skin appearances prompted by the

presence of abnormal amounts of dysfunctional hemoglobin

are relatively rare [33], particularly when compared to cyan-

otic skin appearances associated with the presence of high

levels of dexoyhemoglobin, their investigation was deferred

to future work.

We also generated skin swatches (Figs. 3 and 5) to comple-

ment our investigation. Their chromatic attributes were ob-

tained from the convolution of a selected illuminant’s spectral

power distribution spectrum, the computed reflectance data

and the broad spectral response of the human photoreceptors
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TABLE II

HYLIOS PARAMETERS EMPLOYED IN THE GENERAL

CHARACTERIZATION OF ALL SKIN SPECIMENS CONSIDERED IN THIS

INVESTIGATION. THE ACRONYMS SC, SG, SS, SB, PD AND RD REFER

TO THE SKIN LAYERS CONSIDERED BY HYLIOS: STRATUM CORNEUM,

STRATUM GRANULOSUM, STRATUM SPINOSUM, STRATUM BASALE,

PAPILLARY DERMIS AND RETICULAR DERMIS, RESPECTIVELY.

Parameters Values References

Aspect Ratio of Skin Surface Folds 0.1 [36], [37]
MetHb Conc. in Blood (g/L) 1.5 [38]
CarboxyHb Conc. in Blood (g/L) 1.5 [39]
SulfHb Conc. in Blood (g/L) 0.0 [40]
Blood Bilirubin Conc. (g/L) 0.003 [41]
SC β-carotene Conc. (g/L) 2.1E-4 [42]
Epidermis β-carotene Conc. (g/L) 2.1E-4 [42]
Blood β-carotene Conc. (g/L) 7.0E-5 [42]
SC Water Content (%) 35.0 [43], [44]
Epidermis Water Content (%) 60.0 [43], [45]
PD Water Content (%) 75.0 [43], [45]
RD Water Content (%) 75.0 [43], [45]
SC Lipid Content (%) 20.0 [46]
Epidermis Lipid Content (%) 15.1 [43],[47], [48]
PD Lipid Content (%) 17.33 [43], [47], [48]
RD Lipid Content (%) 17.33 [43],[47], [48]
SC Keratin Cont. (%) 65.0 [49], [50], [51]
SC Urocanic Acid Density (mol/L) 0.01 [52]
Skin DNA Density (g/L) 0.185 [43], [53], [54]
SC Refractive Index 1.55 [55], [56]
Epidermis Refractive Index 1.4 [55], [57]
PD Refractive Index 1.39 [55], [58]
RD Refractive Index 1.41 [55], [58]
Melanin Refractive Index 1.7 [59]
PD Scatterers Refractive Index 1.5 [60]
Radius of PD Scatterers (nm) 40.0 [61]
PD Fraction Occupied by Scatterers (%) 22.0 [22]

TABLE III

STAGES OF PERIPHERAL CYANOSIS SEVERITY CONSIDERED IN THIS

INVESTIGATION. THESE CORRESPOND TO THE COMBINED IMPACT OF

INCREASES IN THE fdeoxy (FRACTION OF DEOXYHEMOGLOBIN TO THE

TOTAL AMOUNT OF FUNCTIONAL HEMOGLOBINS PRESENT IN THE

DERMAL TISSUES) AND vrd
blood

(RETICULAR DERMIS BLOOD CONTENT)

PARAMETERS.

Stage fdeoxy (%) vrd
blood

(%)

Cyanotic I 25.0 5.0
Cyanotic II 50.0 10.0
Cyanotic III 75.0 15.0

[34]. This last step was performed by employing a standard

XYZ to sRGB conversion procedure [35] and considering

three CIE standard illuminants, namely D65, D50 and A

[34]. Since the resulting qualitative observations remained

unchanged regardless of which one we used, we elected to

present in this paper the swatches generated using the D65

(daylight) illuminant to conserve space.

III. RESULTS AND DISCUSSION

As peripheral cyanosis becomes noticeable with increases

in fdeoxy and vrdblood, the corresponding spectral reflectance

curves of the affected skin sites asymptotically converge to a

reflectance curve with a markedly low magnitude. This curve,

henceforth referred to as the reflectance minima (Rmin)

curve, varies from one skin site to another. More specifically,

400 450 500 550 600 650 700
0

10

20

30

40

50

60

70

80

90

100

wavelength (nm)

re
fle

ct
an

ce
 (

%
)

 

 

Baseline
Cyanotic I
Cyanotic II
Cyanotic III

400 450 500 550 600 650 700
0

10

20

30

40

50

60

70

80

90

100

wavelength (nm)

re
fle

ct
an

ce
 (

%
)

 

 

Baseline
Cyanotic I
Cyanotic II
Cyanotic III

Fig. 2. Reflectance curves computed for the dorsal surface of the fingers
belonging to the lightly (left) and darkly (right) pigmented specimens
considered in this investigation. These curves were obtained using the
datasets provided in Tables I and II. However, for the computation of the
cyanotic curves, we have modified the values assigned to the fdeoxy and

vrd
blood

parameters in order to elicit the distinct stages of peripheral cyanosis
considered in this investigation (Table II).

Fig. 3. Skin swatches depicting hue transitions on the dorsal surface of the
fingers belonging to the lightly (top) and darkly (bottom) pigmented spec-
imens considered in this investigation. From left to right, these transitions
correspond to increasing degrees of peripheral cyanosis severity, namely
from baseline to cyanotic stages I, II and III (Table II), respectively. These
swatches were generated considering a D65 illuminant [34] and using the
corresponding skin spectral responses computed using the HyLIoS model
(Fig. 2).

the more abundant is the presence of melanin (either in

the eumelanin or pheomelanin form) in a given site, the

faster is the convergence (notably in 400 to 580 nm region)

and the lower is the overall magnitude of the corresponding

Rmin curve. These aspects can be observed in the reflectance

graphs presented in Figs. 2 and 4.

Accordingly, the fastest convergence to the lowest Rmin

curve verified in our experiments was elicited at the dor-

sal surface of the finger belonging to the selected darkly

pigmented specimen (Fig. 2 (right)). As a result, while one

can observe the characteristic transition from a typical skin

coloration to cyanotic hues in the skin swatches generated for

the selected lightly pigmented specimen (Fig. 3 (top)), the

same cannot be observed for the selected darkly pigmented

specimen (Fig. 3 (bottom)).

Clearly, the presence of melanin can mask variations on

spectral responses associated with changes in the contents

of other pigments found in the cutaneous tissues such as the

different types of hemoglobin. Accordingly, the noninvasive

measurement of blood related properties (e.g., oxygen sat-

uration levels [1]) is usually performed at hypopigmented

sites, such as the palmar fingertips, characterized by a

reduced melanin content (more than fivefold lower than
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Fig. 4. Reflectance curves computed for the palmar fingertips of the
lightly (left) and darkly (right) pigmented specimens considered in this
investigation. These curves were obtained using the datasets provided in
Tables I and II. However, for the computation of the cyanotic curves, we
have modified the values assigned to the fdeoxy and vrd

blood
parameters in

order to elicit the distinct stages of peripheral cyanosis considered in this
investigation (Table II).

Fig. 5. Skin swatches depicting hue transitions on the palmar fingertips of
the lightly (top) and darkly (bottom) pigmented specimens considered in this
investigation. From left to right, these transitions correspond to increasing
degrees of peripheral cyanosis severity, namely from baseline to cyanotic
stages I, II and III (Table II), respectively. These swatches were generated
considering a D65 illuminant [34] and using the corresponding skin spectral
responses computed using the HyLIoS model (Fig. 3).

in the nonpalmoplantar regions [14]) and increased blood

content [62]. These characteristics also make these sites more

susceptible to the chromatic variations associated with pe-

ripheral cyanosis. For these reasons, we have also examined

the spectral responses of the selected specimens’ palmar

fingertips.

Indeed, the spectral responses elicited at the palmar fin-

gertip of the selected lightly pigmented specimen resulted

in the slowest convergence to the corresponding Rmin curve

(Fig. 4 (left)). In addition, this curve is marked by the highest

overall magnitude among the Rmin curves computed during

our experiments. Consequently, one can again observe the

characteristic transition from a typical fingertip coloration to

cyanotic hues in the swatches generated for this specimen’s

palmar site (Fig. 5 (top)). More importantly, the convergence

of the reflectance curves computed for the selected darkly

pigmented specimen’ palmar fingertip (Fig. 4 (right)) is con-

siderably slower than that of the reflectance curves computed

for the nonpalmar surface (Fig. 2 (right)). Moreover, we

remark that the curves for the darkly pigmented specimen’s

palmar fingertip converged to a Rmin curve with a higher

magnitude than the corresponding Rmin curve computed

for the nonpalmar surface. Hence, by selecting the palmar

fingertip as the observation site, one may be also able to

detect cyanotic hue variations in darkly pigmented specimens

as illustrated by the swathes depicted in Fig. 5 (bottom)).

In summary, our findings demonstrate that it may not

be possible to visually detect peripheral cyanosis in darkly

pigmented individuals when one selects a palmar surface as

the observation site. Our in silico experiments indicate that

this detection difficulty is largely associated with dominant

role played by melanin on the absorption of visible light,

particularly in the 400 to 580 nm region. However, our

findings also show that the masking effects of melanin can

be substantially mitigated by selecting a hypopigmented area,

such as the palmar fingertip, as the observation site.

IV. CONCLUDING REMARKS

The importance of detecting peripheral cyanosis is directly

associated with the life-threatening risks posed by the med-

ical conditions that can trigger it. Since these conditions are

not exclusively associated with a specific level of cutaneous

pigmentation, efforts should be directed toward making the

effective detection of peripheral cyanosis universal, i.e, less

dependent on a patient’s pigmentation characteristics. These

efforts will likely require pairing in vivo observations with

in silico experiments such as those reported in this work.
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