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a b s t r a c t

Sand is one of the most complex materials found in nature. Undeniably the correct modelling of its

appearance attributes (such as hue, lightness, and glossiness) is essential to the realistic image synthesis

of a wide range of outdoor scenes. Despite this central role, to date, few simulation efforts have been

specifically directed to this ubiquitous material. In this paper, we present a modular framework for

simulating the appearance of sandy landscapes. It is based on the use of a comprehensive light transport

model specifically designed for granular materials like sand, and robust numerical reconstruction

methods. While the former provides the physical basis for the generation of predictive results, the latter

add efficiency to entire simulation process by enabling the use of analytical formulae to represent the

spectral and spatial (scattering related) appearance attributes of sand. The fidelity and usefulness of the

proposed framework are demonstrated through several image sequences depicting sand appearance

variations resulting from changes of mineralogical characteristics and environmental conditions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Sand is a natural particulate material found in a variety of
environments, from beaches and deserts on Earth to dune fields
on Mars. In order to render realistic images depicting such sandy
landscapes, one has to carefully account for its optical properties.
Although an extensive amount of research has been directed
toward the simulation of material appearance [1], few efforts
have been specifically aimed at sand. In this article, we present a
compact framework for the efficient modelling of its appearance.
Since our approach is geared up to the synthesis of predictive
images of real landscapes, we employ physically meaningful
parameters to characterize different sand samples and control the
processes that determine their appearance attributes.

As any material, the appearance of sand is determined by the
spectral and spatial distribution of light interacting with it [2]. The
former affects colour-related characteristics, and it is usually
measured in terms of reflectance. The latter affects characteristics
such as reflection haze (glossiness) and retroreflection, and it is
usually measured in terms of bidirectional reflectance distribution
function (BRDF). The physically based modelling of these radio-
metric quantities is a challenging problem, however. The difficulties
arise from the array of factors affecting the light interactions with
sand, such as the shape, size and distribution of sand grains
(particles), and the presence of different mineral contaminants and
other inorganic substances, just to name a few.
ll rights reserved.
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In studies involving the geometric modelling of sand surfaces,

such as the works by Valette et al. [3] or Onoue and Nishita [4,5],

the rendering of sand is usually achieved through the use of

texture maps or functions. Such an approach is bound by the

availability of texture data with the resolution, illumination and

appearance characteristics (e.g., hue and lightness) appropriate

for the target scene. Few works have expanded upon this

approach, however. For example, Kass and Miller [6] proposed

the application of a wetness map to scale reflectance values in

order to achieve the darkening effect caused by the presence of

water in sand samples. Oren and Nayar [7] presented a general-

ization of the Lambertian model in order to simulate the BRDF of

sand surfaces. They compared the output from their model to

measurements performed on a sand sample. Their simulations,

however, were restricted to the spatial domain, i.e., spectral

reflectance data are required as input to their model. We remark

that the measured spectral reflectance data sets currently

available for sand are limited to a narrow range of illumination

and environmental conditions. Subsequently, Jensen et al. [8]

used an extension of the Henyey–Greenstein phase function to

adjust the degree of forward scattering and achieve varying levels

of wetness in sand samples. It has been demonstrated that this

function bears no relation to the sand characterization parameters

[9]. Hence, its use in this context precludes the generation of

predictive images of sand samples. More recently, Soulié et al.

[10] used 3D Voronoı̈ diagrams to model the appearance of

compact granular materials such as granite.
Recently, a spectral light transport model for sand (SPLITS) has

been proposed [11]. This model uses Monte Carlo techniques to

simulate light interactions with individual sand particles gener-

ated on the fly. It uses as input the physical parameters and
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and sand-sized particles comprising the various soil textural classes [13].

))

8

10 100

B.W. Kimmel, G.V.G. Baranoski / Computers & Graphics 34 (2010) 441–448442
mineralogical characteristics describing a given sand sample,
and outputs the radiometric quantities that provide its mea-

surement of appearance [2], namely spectral reflectance and
BRDF. Its predictability and accuracy have been illustrated by
the close qualitative and quantitative agreement between
modelled results and actual measured data. Similar to other
stochastic models, SPLITS is computationally expensive since
many trials are required to obtain asymptotically convergent
results. Consequently, it is not suitable for online applications
demanding high interactivity rates. It can, however, be used
offline to compute accurate spectral and spatial radiometric
data for sand under different illumination and environmental
conditions. Such data can then be incorporated into a more
efficient modelling framework.

This article presents such a framework, which builds upon
reliable numerical reconstruction techniques to allow for the
efficient prediction of the full measurement of appearance of sand
samples. This framework takes as input the physical parameters
describing the sample of interest and outputs its corresponding
spectral BRDF, which, in turn, can be used on the realistic
rendering of sandy landscapes. It is worth noting that the
proposed framework can employ different models. The selection
of SPLITS was motivated by the fact its target application is sandy
landscapes, and this model is the most comprehensive model for
light interaction with sand available in the literature. Although
similar approaches have been used to model other key compo-
nents of outdoor scenes, such as the formulation proposed by
Preetham et al. [12] to fit data from simulations of atmospheric
scattering responsible for the colour of the sky, to the best of our
knowledge, no similar approach for modelling the appearance of
sand has been proposed in the graphics literature to date.
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Fig. 2. The shaded region indicates the range for the relative proportions (by

mass) of clay, silt, and sand-sized particles in sand [13].
2. Background

Sand is a particular type of soil. It is composed primarily of
weathered rock, immersed in a medium composed of air and
water called the pore space [14]. The mineral component of a soil
is classified according to its particle size distribution [13]. A series
of sieves are used to separate particles falling into size ranges as
indicated in Table 1, with clay being the smallest, followed by silt
and sand. The fraction of these soil separates by mass determines
the soil texture, as indicated in Fig. 1. Particles larger than 2 mm in
diameter are considered gravel and do not contribute to the
determination of soil texture. Sand consists of at least 85% sand-
sized particles by mass (Fig. 2).

The most common mineral constituent of sand is quartz [15].
Although quartz is colourless in pure form, its colour may be affected
by the presence of trace amounts of contaminants [16]. As depicted
in Fig. 3, these impurities are crucial in determining the appearance
of sand. The constituent primarily responsible for determining the
appearance of sand is iron oxide [18], which may be present in
several forms. Hematite, or red ochre, imparts a red hue, and is often
found in tropical climates. Goethite, one of the most common
mineral colourants of soils, is responsible for the yellows and
browns. Magnetite is black and is often present in beach and river
Table 1
Soil separates (particle size classes) defined by the United States Department of

Agriculture [13].

Name Range (mm)

Sand 0.05–2.0

Silt 0.002–0.05

Clay o 0.002
sands [19]. Additionally, the presence of water darkens sand,
primarily by reducing the contrast between the refractive index of
the pore space and the refractive index of quartz, which is
approximately 1.5 in the visible region of the electromagnetic
spectrum. This reduction in contrast decreases the angle of refraction
and reduces Fresnel reflection at quartz interfaces, thereby
introducing a forward scattering bias. Other factors, such as
particle size and shape, also influence the appearance of sand [20].

SPLITS [11] uses standard Monte Carlo techniques to simulate the
appearance of a particulate medium, i.e., to predict its spectral BRDF.
In its formulation, sand particles are modelled as randomly oriented
spheroidal particles. Although the authors describe how arbitrary
particle size and shape distributions may be used, it was found that
approximation by prolate spheroids was sufficient to obtain good
quantitative and qualitative reconstructions of the reflectance
properties of sand [11]. These particles are randomly distributed
throughout a medium of water and air (the pore space) contained
within the half-space below a plane boundary. The particles
themselves consist of quartz cores, possibly mixed with hematite or
goethite, or covered in a thin coating of hematite or goethite in a
kaolinite matrix. The model parameters include the concentrations of
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various iron oxides: hematite, goethite, and magnetite, as well as the

fraction of the pore space occupied by water, known as the degree of

saturation. Additional parameters describe the geometrical arrange-

ment of the mineral constituents [11].
Light interaction with the simulated sand medium proceeds

using standard Monte Carlo techniques. Once a ray penetrates the

extended boundary and enters the medium, light interaction is

simulated with the particles contained therein. In a traditional ray

tracing approach, these particles would be stored individually,

potentially imposing a large memory footprint. Techniques such as

spatial subdivision could be used to accelerate the ray–particle

intersection process. Alternatively, the bulk scattering properties of

the medium may be approximated using pre-computed phase

functions [21]. Instead, the SPLITS model uses a hybrid approach,

relying on stochastic methods to determine the location of the next
Fig. 4. A comparison between a traditional ray tracing approach and that employed

approach, the particles are explicitly stored. Several ray-particle intersection tests may

distance to the next particle is generated randomly according to a path length distributi

generated randomly. Light interaction with the particle is simulated. The ray is either ab

new one is generated. This process is repeated until the ray is absorbed or scattered o
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Fig. 3. A demonstration of the effect caused by iron oxide contamination in quartz.

The dotted line in both plots represents the spectral reflectance of a pure quartz

sample [17]. The dashed line represents the spectral reflectance of a pure iron oxide

sample. The solid line represents the spectral reflectance of an artificially prepared

mixture consisting of 98% (by mass) quartz and 2% iron oxide. Left: The iron oxide is

hematite [17]. Right: The iron oxide is goethite [17]. The spectral features of

hematite (respectively, goethite) are clearly visible in the mixed samples.
ray-particle intersection, as illustrated in Fig. 4. The distance to and

orientation of the nearest particle along the path is determined

randomly. Light interaction with that particle is then simulated

explicitly using standard techniques. The particle is subsequently

discarded. This process is repeated until the ray is absorbed or is

scattered back outside the boundary of the medium.
As with many techniques that use Monte Carlo methods, many

repetitions are required for the result to converge within
acceptable bounds. For SPLITS, or other Monte Carlo material
models, on the order of 106–109 rays may be needed, depending
on the requirements of the application. Although the precise
timing varies according to the input parameters used and the
number of trials needed, 108 rays typically requires 145 min using
a single core of an Intel Xeon 2.8 GHz Quad-Core processor. To
overcome this, the authors proposed an analytical formulation for
predicting sand spectral signatures [22]. This formulation predicts
the spectral directional-hemispherical reflectance [23,24],

rðoiÞ ¼

Z
Oo

frðoi,ooÞdo?o ð1Þ

of a sand sample, given its physical and mineralogical character-
istics, and is suitable for applications demanding high interactive
rates. Whereas the Monte Carlo approach may require several
hours to compute a spectral signature for a single sample, an
analytical formulation is capable of computing several spectral
signatures instantaneously in comparison. It does not, however,
account for the spatial distribution of the reflected light (i.e., the
BRDF), and is therefore not suitable for computer graphics
applications. The framework proposed here builds upon the
techniques described therein to allow for the prediction of the
full measurement of appearance [2] of a given sand sample.
by the SPLITS model [11] is depicted. Top sequence: For a traditional ray tracing

be required for each leg in the path. Bottom sequence: For the SPLITS model, the

on. The orientation of the particle, as well as a point on the particle surface, are also

sorbed in the particle or scattered. In the latter case, the particle is discarded and a

utside of the medium.
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3. Framework

The proposed analytical framework, illustrated in Fig. 5, is
comprised of two main components. The spectral component
predicts the directional-hemispherical reflectance based on the
physical characteristics of the sand sample. This process is
described in detail in [22]. For the sake of completeness, it is
also outlined in this paper. The spatial component predicts the
distribution of reflected light over the hemisphere as a function
of incident direction, wavelength, and the physical characteristics
of the sample. The resulting BRDF generated by the spatial
component is scaled to integrate to 1 over the upper hemisphere
for a zero degree incident angle. The final BRDF is then con-
structed by combining the BRDF generated by the spatial com-
ponent with the directional-hemispherical reflectance given by
the spectral component.
3.1. Spectral component

The purpose of the spectral component is to obtain a predictor
for the spectral directional-hemispherical reflectance of sand
samples, based on the SPLITS model, as a function of the physical
and mineralogical properties of the sample. First, the characteriza-
tion data for 3000 samples were chosen randomly from within the
domain of the SPLITS model. The model was then applied to yield
the corresponding directional-hemispherical reflectance curves,
using an incident angle of zero degrees. Principal component
analysis (PCA) and regression techniques were applied, as described
below, to obtain the predictor. These techniques were selected due
to their well known efficacy, which has been demonstrated in
practical applications across many fields, including computer
graphics (e.g., [25,26]). The variation in the directional-hemisphe-
rical reflectance with incident angle is accounted for by the spatial
component of this framework to be described later.
SPLITS
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Fig. 5. Diagram illustrating the proposed framework for predicting the appearance of

represents the spatial component. The two components are then combined to constru
3.1.1. Principal component analysis

Principal component analysis was applied to the directional-
hemispherical reflectance curves generated by SPLITS. This
process yields an orthogonal set of eigenvectors ui indicating
the directions of decreasing variance in the reflectance data. These
eigenvectors span the same space as the original data and may be
used as basis vectors to reconstruct the original reflectance
curves. The analysis also yields the corresponding principal
components that indicate the linear combination of the basis
vectors required for this reconstruction.

Since the eigenvectors are ordered by decreasing variance in
the original data, it is typically assumed that eigenvectors
beyond a given threshold, k, represent noise in the data. These
directions may therefore be discarded by projecting the
original reflectance curves onto the space spanned by the first
k eigenvectors ui, . . . ,uk. This process yields a predictor for the
spectral direction-hemispherical reflectance, r, of the sample
as a function of corresponding principal components ~r, having
the form

r�Uk ~r, ð2Þ

where Uk is the n� k matrix having columns consisting of the first k

eigenvectors, and n is the number of wavelengths sampled. In our
experiments, we found 16 wavelengths, between 400 and 700 at
20 nm intervals, to be sufficient to accurately represent the
reflectance curves produced by the SPLITS model. We also found
that four eigenvectors were sufficient to reproduce over 99.9% of
the variance in the training set.

3.1.2. Regression

Since the principal components ~r do not have meaningful physical
or mineralogical interpretation themselves, it is necessary to relate
these to the physical and mineralogical properties of the correspond-
ing sand sample. To accomplish this, a non-linear regression analysis
was performed. The original characterization data x is first mapped
into a higher dimensional feature space via a non-linear function fðxÞ
CA
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sandy surfaces. The top half represents the spectral component. The bottom half

ct the spectral BRDF.
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defined using a cubic monomial basis in the components of x. Linear
regression was then performed in this m-dimensional feature space.
This yields an m� k matrix W which may be applied to obtain a
predictor for the principal components ~r corresponding to a given set
of characterization data. The predictor has the form

~r �WtfðxÞ: ð3Þ

3.1.3. Reconstruction of the spectral reflectance curve

Combining Eqs. (2) and (3) yields

r�UkWtfðxÞ: ð4Þ

This predicts the spectral directional-hemispherical reflectance
curve r, corresponding to a zero degree incident angle, for a sand
sample having the specified set of characterization data x.

3.2. Spatial component

In constructing a predictor for the spatial distribution of
the light reflected from a sand sample having a given set of
physical and mineralogical characteristics, we first restrict our
attention to subset of the domain of the SPLITS model that includes
the region of interest for a particular application. The characteriza-
tion data for a number of samples are chosen, forming a mesh that
covers this subset of the domain. A modification of virtual
goniophotometry [27], described below, is applied to obtain the
BRDF corresponding to each sample. Each BRDF is normalized to
unit reflectance at normal incidence. Principal component analysis
and interpolation, also described below, are applied to obtain a
predictor for the normalized BRDF, given a new set of character-
ization data.

3.2.1. Virtual BRDF measurement

To compute the BRDF corresponding to a given a set of
characterization data within the domain of the SPLITS model, a
variation of virtual goniophotometry [27] is employed. For a
virtual goniophotometer, the hemisphere above the point on the
surface to be measured is divided into a number, r, of patches.
A counter, ni, is required for each patch for i¼1,y,r. A particular
incident angle is selected and the model under consideration
is applied N times. Typically, N is selected to be on the order
of 108 rays, although this may vary depending on the nature of the
BRDF and the desired accuracy. During each trial, the incident
light may be scattered or absorbed. If it is scattered, the counter ni

corresponding to the patch containing the scattered direction is
incremented. The BRDF for each outgoing patch i is estimated by

fi ¼
ni

Nop
,

where op is the projected solid angle of the patch. This entire
process is repeated for several incident angles to obtain a full
BRDF.

In this framework, rather than fixing the incident direction, it
is chosen at random, uniformly over the hemisphere, prior to
each trial. The hemisphere of incoming directions is divided in an
analogous manner to the hemisphere of outgoing directions.
In our experiments, we divided each hemisphere into patches
of equal solid angles. The hemisphere was divided into 31 stacks
in the polar direction. The top stack (representing the normal
direction) was not divided any further. The remaining stacks were
each divided into 30 slices along the azimuthal direction, yielding
a total of r¼901 patches. Counters ni,j are required for each pair
consisting of an incoming patch i and outgoing patch j, for
i¼1,y,r, j¼1,y,r. If the incident ray is scattered, the correspond-
ing counter ni,j is incremented. If the incident ray is absorbed, a
separate counter ni,0 is incremented. The BRDF corresponding to a
pair (i,j) is estimated using

fi,j ¼
ni,j

oðjÞp

Pr
k ¼ 0 ni,k

,

where oðjÞp is the projected solid angle of the outgoing patch.
Due to the nature of the SPLITS BRDF, the O(r2) data points

generated by the above process may be greatly reduced. The
isotropism of the SPLITS BRDF, as well as Helmholtz reciprocity,
are exploited to reduce the error in the two dimensional array.
This was accomplished by replacing each fi,j with an average of all
the values fi0 ,j0 which are known to be identical to fi,j. The resulting
BRDF is then normalized to unit reflectance at normal incidence
by computing

f̂ i,j ¼
fi,jPr

k ¼ 1 o
ðkÞ
p fi,k

:

Finally, the two dimensional array f̂ i,j is reduced to a linear array f
of the m unique values.

3.2.2. Principal component analysis

Principal component analysis was then applied to the linear
arrays f i representing the deflated BRDFs. This results in an
orthogonal set of basis vectors vi and the corresponding principal
components ~f i that indicate the linear combination of the basis
vectors required to reconstruct the original BRDFs. As was done
earlier, the eigenvectors beyond a given threshold ‘ are discarded.
The first ‘ vectors v1, . . . ,v‘ are then used in reconstruction. Given
the principal components ~f corresponding to a new sample, the
BRDF may be reconstructed by computing

f � V‘ ~f, ð5Þ

and then expanding the resulting compressed BRDF to obtain the
full BRDF, where V‘ is the m� ‘ matrix v1, . . . ,v‘ as its columns.

3.2.3. Interpolation of principal components

To determine the principal components to use for a new
sample, recall that the selected domain points form a mesh. Thus,
the characterization data x of the new sample may be expressed
as an affine combination

x¼
Xn

i ¼ 1

aixi,
Xn

i ¼ 1

ai ¼ 1 ð6Þ

of the selected domain points xi. We therefore combine the
principal components ~f i using the same interpolants. That is,

~f ¼
Xn

i ¼ 1

ai
~f i: ð7Þ

3.2.4. Reconstruction of the spatial component

Given the characterization x of a particular sand sample, we
construct the spatial component of the BRDF first by determining
the appropriate affine combination aðxÞi of the xi with which to
represent x in the form of Eq. (6). We then combine the
corresponding principal components using Eq. (7). Expanding
the resulting linear array yields the estimated BRDF fi,j for each
pair consisting of an incoming patch i and an outgoing patch j. To
construct a continuous BRDF fxðu,vÞ from these data points, the
centroid ui is computed for each patch i. We then set fxðui,ujÞ ¼ fi,j.
Values for other directions are computed by interpolation over
the hemisphere.

3.3. Combining the spectral and spatial components

Using the spectral and spatial components of the proposed
framework, we may now predict the spatial and the spectral



Fig. 6. Images depicting the variation of sand colour as the concentration of iron
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distributions of reflected light from a sand sample having defined
physical and mineralogical characteristics. The spectral direc-
tional-hemispherical reflectance for zero degree incident light,
described by Eq. (4), yields a spectral reflectance curve at 16
wavelengths between 400 and 700 nm, inclusively. The spatial
distribution fx for a sand sample with characterization data x is
constructed as described above. It has the form of a BRDF that has
been scaled so thatZ
O

fxðn,vÞ cosydv¼ 1,

where n is the normal to the surface. We may now combine the
spatial and the spectral components to yield a predictor,

UkWtfðxÞfxðu,vÞ

for the BRDF of a sand sample with physical characterization x.
This representation yields an explicit formula for the computation
of the BRDF, enabling it to be incorporated into a wider variety of
rendering algorithms than a pure Monte Carlo approach, ranging
from basic path tracing [28] to more advanced techniques [29,21].
oxides and the hematite/goethite ratio are changed. The former parameter

increases to the right, while the latter increases downward. The images were

generated using the proposed framework.

1 http://www.npsg.uwaterloo.ca/misc/sand
4. Results

Using the proposed framework, we can predict the appearance of
a sand sample with given physical and mineralogical characteristics.
To demonstrate the spectral aspect, we have used the proposed
framework to colourize an image of a sandy surface, varying the
characterization parameters within the domain of the SPLITS model.
The proposed framework was also used to animate two scenes
featuring sandy landscapes. The first portrays a desert scene as the
Sun traverses the sky over the course of one day. The second depicts
waterlines along a beach landscape which dry over several hours.

4.1. Spectral component

To demonstrate the spectral component of the proposed
framework, a close up image of a sandy surface has been
colourized. The physical and mineralogical properties have been
varied within the domain of the SPLITS model.

4.1.1. Colourization

To give the image the appearance of a surface with the given
characteristics, the spectral component of the framework was
used for colourization. The corresponding reflectance curve, rðlÞ,
was computed according to the framework. Given the spectral
power distribution eðlÞ for a particular illuminant, we may obtain
the CIE XYZ tristimulus values,

X ¼

Z 1
0

eðlÞrðlÞxðlÞdl,

Y ¼

Z 1
0

eðlÞrðlÞyðlÞdl,

Z ¼

Z 1
0

eðlÞrðlÞzðlÞdl,

where x, y, and z are the CIE colour matching functions [30]. For
the images presented here, we used the CIE D50 illuminant. The
CIE 1964 standard observer was used for the colour matching
functions. The XYZ tristimulus values were then converted to
standard RGB [30], first by performing the transformation

R0

G0

B0

0
B@

1
CA¼

3:2410 �1:5374 �0:4986

�0:9692 1:8760 0:0416

0:0556 �0:2040 1:0570

0
B@

1
CA

X

Y

Z

0
B@

1
CA:
Each of R
0

, G
0

, and B
0

was then clamped to the interval [0, 1] and
gamma corrected using

R¼ 1:055R0g�0:055,

(and similarly for B and G) where g¼ 1=2:4.
The image was then colourized using the RGB triple. This was

accomplished by computing the mean RGB values for the original
image. This mean was then subtracted from each pixel and the
RGB triple computed using the proposed framework was added.

4.1.2. Images

The techniques described above were used to colourize an
image of a patch of a sandy surface. Figs. 6 and 7 depict the
variations in colour corresponding to the spectral reflectance
predicted using the proposed framework.

In Fig. 6, the concentration of iron oxide is varied from 0.001 to
0.05 in the horizontal direction. The hematite/goethite ratio,

hematite

hematiteþgoethite
,

varies from 0 to 1 in the vertical direction.
In Fig. 7, the hematite/goethite ratio is varied from 0 to 1 in the

horizontal direction and the degree of saturation (water content)
is varied from 0 to 1 in the vertical direction.

4.2. Animations

As a demonstration of potential applications for the proposed
framework, we have created two animations: the first depicting a
desert scene as the Sun traverses the sky over the course of a day,
and the second depicting waterlines along a beach drying over
time. Selected frames from these animations are presented in
Figs. 8 and 9, respectively. The full animations are available with
the online version of this manuscript or at the authors’ website.1

4.2.1. Desert scene

An image of a desert landscape was used as the basis from
which the animation was constructed. A rough approximation of
the desert landscape (a flat surface) was used in a ray tracing
simulation. The BRDF computed using this framework was

http://www.npsg.uwaterloo.ca/misc/sand
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sampled using a cosine distribution. For our purposes, we found
this to be sufficient. However, at increasingly grazing angles, this
approach may become inefficient. For such applications, one might
Fig. 7. Images depicting the variation of sand colour as the hematite/goethite ratio

and the degree of saturation are changed. The former parameter increases to the

right, while the latter increases downward. The images were generated using the

proposed framework.

Fig. 8. Selected frames of an animation sequence depicting a dese

Fig. 9. Selected frames of an animation sequence depicting a beach sce
opt to sample the hemisphere according to a closer approximation
of the BRDF. This could be obtained using, for example, a
combination of generalized cosine lobes [31] or a scheme based
on elliptical contours [32]. The daylight model developed by
Preetham et al. [12] was used to illuminate the scene, with the Sun
passing over the sky over the course of a 12 hour period.

The resulting spectral image was converted to standard RGB using
the same technique described above. The following process was then
applied to incorporate the texture of the sand into the image. The
ground in the original image was isolated and blurred heavily. The
original image was then divided by the blurred image pixel by pixel,
yielding a quotient image. Each frame in the animation was then
multiplied by the resulting quotient image. More sophisticated
techniques could be applied if required for a particular application.
4.2.2. Beach scene

To create the beach scene, two waterlines were created using
Brownian motion curves and overlaid onto a flat surface
representing the beach landscape. These were used to construct
a texture map for controlling the degree of saturation (water
content) of the sand. The degree of saturation is gradually
decreased over the course of the day (as the Sun traverses the
sky). It was assumed that the sand in this scene is otherwise
homogeneous, and that the spatial distribution of the BRDF did
not vary with wavelength. The adapted virtual goniophotometer
was applied using 16 different values for the degree of saturation,
rt scene as the Sun traverses the sky over the course of a day.

ne as waterlines dry over several hours during the course of a day.
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ranging from zero to one. The resulting BRDFs were reduced to
three principal components using the techniques described above.
A grainy texture was applied as a post-process to give the sand a
more natural appearance.
5. Conclusion and future work

In this paper, we have presented an efficient framework for
simulating the appearance of sandy landscapes. Its design is based
on the use of high fidelity spectral and spatial data computed
offline using a comprehensive Monte Carlo light transport model
for sand [11]. This data are then reconstructed on demand using
analytical formulae derived using robust numerical methods. This
approach allows the simulation process to be controlled by
physically meaningful parameters while enabling the predictable
representation of sand appearance attributes at interactive rates.
The effectiveness of the proposed framework was demonstrated
through sets of rendered images depicting sand appearance
changes triggered by different physical and environmental
parameters.

The modular structure of the proposed framework allows
a straightforward incorporation of application driven
refinements. For example, to construct a predictor for the spatial
distribution of the light reflected from a sand sample, we adapted
virtual goniophotometric techniques and interpolated the result-
ing data directly. This approach was chosen for its relative
simplicity and to achieve maximum flexibility to represent
different forms of scattering. By exploiting the isotropism of the
model in question, the memory footprint was reduced by a
significant factor. Depending on the nature of the BRDF required
for a particular application, however, one may opt for a different
representation, such as spherical wavelets, or fitting to an
analytical BRDF model.

As future work, we intend to further explore the modularity
of the proposed framework in order to extend its scope of
applications to the predictive rendering of other types of
landscapes. For instance, more recent techniques in statistical
analysis, such as independent component analysis [33], could be
used in place of PCA. Additionally, despite the ubiquitousness of
sand in the natural environment, there are many other classifica-
tions of soils that may be considered. In our research, we have
accounted for the most common mineral constituents of sand.
This framework, however, could be extended to include sands
with other mineral compositions or to account for other
contaminants, such as oil. We would also like to extend SPLITS
itself to simulate additional granular materials. We remark that
the main purpose of the proposed framework is generate results
with a high accuracy/cost ratio. To achieve this goal, it uses as a
basis of comprehensive light transport model (SPLITS) specifically
designed and validated ]for the material at hand (in this case
sand), and employs analytical techniques to overcome the
inherent computational costs of such a model. In the case of
another natural material, SPLITS can be replaced by a
model specifically designed and validated for this material.
Although the reconstruction parameters (e.g., number of eigen-
vectors employed to represent the variance of the training set)
may need to be adapted to the characteristics of a different
material, the underlying framework structure remains the same.
Ultimately, we expect to implement an online interactive system
to generate predictable representations of appearance attributes
for a number of natural materials under various environmental
conditions.
Appendix A. Supplementary data

Supplementary data associated with this article can be found
in the online version at doi:10.1016/j.cag.2010.04.002.
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[3] Valette G, Prévost S, Lucas L, Léonard J. SoDA project: a simulation of soil
surface degredation by rainfall. Computers and Graphics 2006;30(4):494–506.

[4] Onoue K, Nishita T. A method for modeling and rendering dunes with wind-
ripples. In: Proceedings of the Pacific conference on computer graphics and
applications, 2000. p. 427–8.

[5] Onoue K, Nishita T. Virtual sandbox. In: Proceedings of the Pacific conference
on computer graphics and applications, 2003. p. 252–9.

[6] M. Kass, G. Miller, Rapid stable fluid dynamics for computer graphics. In:
Computer graphics (SIGGRAPH proceedings), vol. 24, 1990. p. 49–57.

[7] Oren M, Nayar S. Generalization of Lambert’s reflectance model. In: Computer
graphics proceedings, Annual conference series, 1994. p. 239–46.

[8] Jensen H, Legakis, J, Dorsey J. Rendering of wet materials. In: Proceedings of
the eurographics workshop on rendering, 1999. p. 273–82.

[9] Li Z, Fung A, Tjuatja S, Gibbs D, Betty C, Irons J. A modeling study of
backscattering from soil surfaces. IEEE Transactions on Geoscience and
Remote Sensing 1996;34(1):264–71.
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