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Abstract

Sand is one the most complex materials found in nature. Ualdlnthe correct modelling of its appearance attributegiisas
hue, lightness, and glossiness) is essential to the iiealisige synthesis of a wide range of outdoor scenes. Detpdteentral
role, to date, few simulationfforts have been specifically directed to this ubiquitous nedtdn this paper, we present a modular
framework for simulating the appearance of sandy landscafids based on the use of a comprehensive light transpatdiemo
specifically designed for granular materials like sand, mofmlist numerical reconstruction methods. While the formreviges
the physical basis for the generation of predictive restitts latter add #iciency to entire simulation process by enabling the
use of analytical formulae to represent the spectral antiatfjscattering related) appearance attributes of sahe. filelity and
usefulness of the proposed framework are demonstratedghrseveral image sequences depicting sand appearanaBovexi
resulting from changes of mineralogical characteristig$ @nvironmental conditions.
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1. Introduction In studies involving the geometric modelling of sand sur-
Sand i | icul ial found i . ffaces, such as the works by Valege al. [3] or Onoue and
and is a natural particulate material found in a variety Olyjigpjiy [4, 5], the rendering of sand is usually achieveduigh

environments, from beaches and deserts on Earth to dung fielfhe use of texture maps or functions. Such an approach igboun
on Mars. In order to render realistic images deplct]ng su_Ckby the availability of texture data with the resolutionuithina-
sandy I_andscapes, one has to carefully account for |tsalipt|ction and appearance characteristiegy( hue and lightness) ap-
properties. Although an extensive amount of research has be propriate for the target scene. Few works have expanded upon
directed toward the smL_JIatlon .Of material appeargncefm, this approach, however. For example, Kass and Miller [6} pro
efforts have been specifically aimed at _sand. In th!s arugle, W‘f)osed the application of a wetness map to scale reflectahce va
present a compact framework for thﬁi«aent modelling of its ues in order to achieve the darkenirfieet caused by the pres-
appearance. Since our approach is geared up to the sy_nthegﬁce of water in sand samples. Oren and Nayar [7] presented a
of predictive images of real landscapes, we employ phygical generalization of the Lambertian model in order to simutlée

meaningful parameters to characterizﬁgd'ent sand samples BRDF of sand surfaces. They compared the output from their
and control the processes that determine their appearance fhodel to measurements performed on a sand sample. Their

tributes. simulations, however, were restricted to the spatial don.ai.,

As any material, th_e appearance of s_and s detef”‘_'”ed bgpectral reflectance data is required as input to their mouel
f[he spectral and spatial distribution of light mte_raf:tlwgh .. remark that the measured spectral reflectance data setsttyrr
it [2]. The former dfects colour-related characteristics, and 'tavailable for sand are limited to a narrow range of illumiot

|shusually. m_easurer? n terf{ns .Of rﬁflectanlce. _The Iagl:{;:ﬁs and environmental conditions. Subsequently, Jers$en. [8]
characteristics such as reflection haze (glossiness) &€ used an extension of the Henyey-Greenstein phase function t

;:ecilon, argjq Itt .';’ lj{'S ualfly mt? asuggénFter_ﬁ]s ofﬁ) 'd',re(ilthgg adjust the degree of forward scattering and achieve vafging
ectance distribution function ( ). The physicallys els of wetness in sand samples. It has been demonstrated that

lmoderl]lmg of the_?ﬁ ra;f:onl"ntt_atrlc q_uan;uﬂes ;f] a challen?Jfr[gi- this function bears no relation to the sand characteriagi
:ﬁm, .OW‘;VGIF- h 1€ diculies a‘f'f]e roc;n eharra)r/] N hac oS rameters [9]. Hence, its use in this context precludes tine ge
ecting the light Interactions with sand, such as the Shape, s ¢ 4o of predictive images of sand samples. More recently

and distribution of sand grains (particles), and the presedf Soulé et al. [10] used 3D Voronbdiagrams to model the ap-
different mineral contaminants and other inorganic SUbStanceﬁearance of compact granular materials such as granite

Just to name a few. Recently, a spectral light transport model for sand (SPLITS
has been proposed [11]. This model uses Monte Carlo tech-
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Name Range (mm) 100
sand 0.05 - 20

silt 0.002 - 005

clay < 0.002

Table 1: Soil separates (particle size classes) definedebytiited States De-
partment of Agriculture [13].

sand sample, and outputs the radiometric quantities ttwat pr
vide its measurement of appearan{®], namely spectral re-
flectance and BRDF. Its predictability and accuracy havebee
illustrated by the close qualitative and quantitative agrent
between modelled results and actual measured data. Stmilar
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other stochastic models, SPLITS is computationally exipens $
since many trials are required to obtain asymptoticallyveon

gent results. Consequently, it is not suitable for onlinpliap SILTROAM d
cations demanding high interactivity rates. It can, howelve sy \.&

used diline to compute accurate spectral and spatial radiomet-
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conditions. Such data can then be incorporated into a mere ef
ficient modelling framework.

This article presents such a framework, which builds upo
reliable numerical reconstruction techniques to allowtfieref-
ficient prediction of the full measurement of appearancentls 10 ‘ ‘ 100
samples. This framework takes as input the physical paeset
describing the sample of interest and outputs its corredpon
ing spectral BRDF, which, in turn, can be used on the realisti
rendering of sandy landscapes. It is worth noting that tlee pr
posed framework can employffirent models. The selection
of SPLITS was motivated by the fact its target application is
sandy landscapes, and this model is the most comprehensive
model for light interaction with sand available in the laasre.

r{:igure 1: The soil texture triangle depicting the perceasay mass) of clay,
silt and sand-sized particles comprising the various sgiltal classes [13].
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Although similar approaches have been used to model otlyer ke ® Gtomass)

components of outdoor scenes, such as the formulation pro-
posed by Preetharmt al. [12] to fit data from simulations of Figure 2: The shaded region indicates the range for thewelatoportions (by

atmospheric scattering responsible for the colour of thetsk 2SS of clay, silt, and sand-sized particles in sand [13].

best of our knowledge, no similar approach for modelling the
appearance of sand has been proposed in the graphicsiliterat As depicted in Figure 3, these impurities are crucial in dete
to date. mining the appearance of sand. The constituent primarily re
sponsible for determining the appearance of sand is iron ox-
ide [18], which may be present in several forms. Hematite, or
red ochre imparts a red hue, and is often found in tropical cli-
Sand is a particular type of soil. It is composed primarily mates. Goethite, one of the most common mineral colourants
of weathered rock, immersed in a medium composed of air andf soils, is responsible for the yellows and browns. Magaési
water called thepore spacg14]. The mineral component of a black and is often present in beach and river sands [19]. -Addi
soil is classified according to its particle size distribnt{13].  tionally, the presence of water darkens sand, primarilyellyic-
A series of sieves are used to separate particles falliogsine  ing the contrast between the refractive index of the poreespa
ranges as indicated in Table 1, with clay being the smalfi@lst, and the refractive index of quartz, which is approximately 1
lowed by silt and sand. The fraction of these soil separages bin the visible region of the electromagnetic spectrum. This
mass determines the stiiture as indicated in Figure 1. Parti- duction in contrast decreases the angle of refraction ahutes
cles larger than 2 mm in diameter are considered gravel and deresnel reflection at quartz interfaces, thereby intrauyaifor-
not contribute to the determination of soil texture. Sanusists  ward scattering bias. Other factors, such as particle sige a
of at least 85% sand-sized particles by mass (Figure 2). shape, also influence the appearance of sand [20].
The most common mineral constituent of sand is quartz [15]. SPLITS [11] uses standard Monte Carlo technigues to sim-
Although quartz is colourless in pure form, its colour mayabe  ulate the appearance of a particulate mediuen,to predict its
fected by the presence of trace amounts of contaminants [163pectral BRDF. In its formulation, sand particles are miedel

2. Background
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Figure 3: A demonstration of thefect caused by iron oxide contamination in b
quartz. The dotted line in both plots represents the sgeeftactance of a pure k —h
quartz sample [17]. The dashed line represents the spezfieitance of a pure
iron oxide sample. The solid line represents the spectralataihce of an artifi-
cially prepared mixture consisting of 98% (by mass) quartz2#dron oxide. AN AN AN . AN
Left The iron oxide is hematite [17]Right The iron oxide is goethite [17]. 0 = :
The spectral features of hematite (respectively goethie)ckearly visible in !
the mixed samples.

Figure 4: A comparison between a traditional ray tracing agph and that em-

as rand0m|y oriented spheroidal particles. Although thbans ployed by the SPLITS model [11] is depictetbp Sequencé-or a traditional
ray tracing approach, the particles are explicitly stof®eleral ray-particle in-

describe hOW arbitrary particle Slze_ and_ shape distribstinay . tersection tests may be required for each leg in the @xttom Sequencéor
be used, it was found that approximation by prolate spheroidthe SPLITS model, the distance to the next particle is geeen@ndomly ac-
was stficient to obtain good quantitative and qualitative recon-cording to a path length distribution. The orientation &f tharticle, as well as
structions of the reflectance properties of sand [11]_ Tpase a point on the particle surface, are also generated randdrigit interaction

. . . with the particle is simulated. The ray is either absorbecheparticle or is
ticles are randomly distributed throthOUt a medium of wate scattered. In the latter case, the particle is discardechamelv one is gener-
and air (thepore spacgcontained within the half-space below ated. This process is repeated until the ray is absorbedsoattered outside of
a plane boundary. The particles themselves consist of zjuarthe medium.

cores, possibly mixed with hematite or goethite, or covéned

a thin coating of hematite or goethite in a kaolinite matfike  ,mper of trials needed, §0ays typically requires 145 min-
model parameters include the concentrations of variomsdre | 1ag using a single core of an Intel Xeo BHz Quad-Core
ides: hematite, goethite, and magnetite, as well as thédrac  ,rocessor. To overcome this, the authors proposed an ialyt
of the pore space occupied by water, known asdégree of o myation for predicting sand spectral signatures [2Phis
saturation Additional parameters describe the geometrical aromulation predicts the spectral directional-hemisjtarre-

rangement of the mineral constituents [11]. flectance [23, 24]
Light interaction with the simulated sand medium proceeds T
using standard Monte Carlo techniques. Once a ray pengtrate N _ n
the extended boundary and enters the medium, light inferact plen) = Q fr(wi, wo) dws, (1)

is simulated with the particles contained therein. In aitiaail

ray tracing approach, these particles would be storediohdiv ©f & sand sample, given its physical and mineralogical char-
ually, potentially imposing a large memory footprint. Tech acteristics, and is suitable for applications demandirggp -
niques such as spatial subdivision could be used to actelera€ractive rates. Whereas the Monte Carlo approach may re-
the ray-particle intersection process. Alternativelye thulk ~ quire several hours to compute a spectral signature for-a sin
scattering properties of the medium may be approximategyusi 9l€ sample, an analytical formulation is capable of conmuti
pre-computed phase functions [21]. Instead, the SPLITSenod Several spectral signatures instantaneously in compariso
uses a hybrid approach, relying on stochastic methods &s-det does not, however, account for the spatial distributiornefre-
mine the location of the next ray-particle intersectionjllas-  flected light {.e., the BRDF), and is therefore not suitable for
trated in Figure 4. The distance to and orientation of theesta COMputer graphics applications. The framework proposeel he
particle along the path is determined randomly. Light iater builds upon the techniques described therein to allow fer th
tion with that particle is then simulated explicitly usingaus- ~ Prediction of the full measurement of appearance [2] of agiv
dard techniques. The particle is subsequently discardags T Sand sample.

process is repeated until the ray is absorbed or is scatherdd

outside the boundary of the medium. 3. Framework
As with many techniques that use Monte Carlo methods,
many repetitions are required for the result to convergaiwit The proposed analytical framework, illustrated in Figure 5

acceptable bounds. For SPLITS, or other Monte Carlo méterids comprised of two main components. The spectral component

models, on the order of £@o 1P rays may be needed, depend- predicts the directional-hemispherical reflectance basethe

ing on the requirements of the application. Although thejze  physical characteristics of the sand sample. This proseds-i

timing varies according to the input parameters used and thgcribed in detail in [22]. For the sake of completeness, it is
also outlined in this paper. The spatial component prediets
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Figure 5: Diagram illustrating the proposed framework fagicting the appearance of sandy surfaces. The top had#gepts the spectral component. The bottom
half represents the spatial component. The two componentseme&ombined to construct the spectral BRDF.

distribution of reflected light over the hemisphere as afionc the directions of decreasing variance in the reflectanca. dat

of incident direction, wavelength, and the physical chemas-  These eigenvectors span the same space as the original data
tics of the sample. The resulting BRDF generated by thealpatiand may be used as basis vectors to reconstruct the original
component is scaled to integrate to 1 over the upper henmsphereflectance curves. The analysis also yields the correspgpnd

for a zero degree incident angle. The final BRDF is then conprincipal components that indicate the linear combinatitthe
structed by combining the BRDF generated by the spatial combasis vectors required for this reconstruction.

ponent with the directional-hemispherical reflectancegiay Since the eigenvectors are ordered by decreasing variance
the spectral component. in the original data, it is typically assumed that eigenwecbe-
yond a given thresholds, represent noise in the data. These
3.1. Spectral Component directions may therefore be discarded by projecting thagirwad
The purpose of the spectral component is to obtain a preeflectance curves onto the space spanned by thefeigfen-
dictor for the spectral directional-hemispherical refcte of ~ VECtorsui,.... ux. This process yields a predictor for the spec-

sand samples, based on the SPLITS model, as a function §! direction-hemispherical reflectanag, of the sample as a
the physical and mineralogical properties of the samplestfFi function of corresponding principal componeifitshaving the

the characterization data for 3000 samples were chosen rafRrm

domly from within the domain of the SPLITS model. The r~ Ui, )
model was then applied to yield the corresponding direefion whereUy is then x k matrix having columns consisting of the
hemispherical reflectance curves, using an incident anfgle Girst k eigenvectors, and is the number of wavelengths sam-
zero degrees. Principal component analysis (PCA) andsegrepled. In our experiments, we found 16 wavelengths, between
sion techniques were applied, as described below, to otftain 400 nm and 700 nm at 20 nm intervals, to béisient to accu-
predictor. These techniques were selected due to their wethtely represent the reflectance curves produced by theTSPLI
known dficacy, which has been demonstrated in practical applimodel. We also found that four eigenvectors wergisient to

cations across many fields, including computer grapteos, (  reproduce over 99% of the variance in the training set.
[25, 26]). The variation in the directional-hemisphericat

flectance with incident angle is accounted for by the spatiaB.1.2. Regression

component of this framework to be described later. Since the principal componentsdo not have meaningful
o _ physical or mineralogical interpretation themselvess itéces-
3.1.1. Principal Component Analysis sary to relate these to the physical and mineralogical ptigse

Principal component analysis was applied to the directiona of the corresponding sand sample. To accomplish this, a non-
hemispherical reflectance curves generated by SPLITS. Thimear regression analysis was performed. The originalazha
process yields an orthogonal set of eigenvectpridicating  terization data is first mapped into a higher dimensional fea-
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ture space via a non-linear functigiix) defined using a cubic an analogous manner to the hemisphere of outgoing direction
monomial basis in the componentsxfLinear regression was In our experiments, we divided each hemisphere into paiwhes
then performed in this+dimensional feature space. This yields equal solid angles. The hemisphere was divided into 31 stack
anm x k matrix W which may be applied to obtain a predictor in the polar direction. The top stack (representing the @brm
for the principal componentScorresponding to a given set of direction) was not divided any further. The remaining stack

characterization data. The predictor has the form were each divided into 30 slices along the azimuthal dioecti
yielding a total ofr = 901 patches. Counters; are required
P~ Wig(x). (3)  for each pair consisting of an incoming patcand outgoing
patchj, fori = 1,...,r, j = 1,...,r. If the incident ray is
3.1.3. Reconstruction of the Spectral Reflectance Curve scattered, the corresponding courtgris incremented. If the
Combining Equations (2) and (3) yields incident ray is absorbed, a separate countgis incremented.
; The BRDF corresponding to a pair |) is estimated using
r ~ UW'o(x). 4) n
1,
This predicts the spectral directional-hemisphericabatéince fij = w(J)Z—rJn
p Zik=0'lik

curver, corresponding to a zero degree incident angle, for a
sand sample having the specified set of characterizati@xdat wherew(pj) is the projected solid angle of the outgoing patch.

i Due to the nature of the SPLITS BRDF, ti@r?) data

3.2. Spatial Component points generated by the above process may be greatly reduced

In constructing a predictor for the spatial distributiortloeé  The isotropism of the SPLITS BRDF, as well as Helmholtz reci-
light reflected from a sand sample having a given set of physiprocity, are exploited to reduce the error in the two dimenai
cal and mineralogical characteristics, we first restritaiten-  array. This was accomplished by replacing eégtwith an av-
tion to subset of the domain of the SPLITS model that includesrage of all the value§ ;; which are known to be identical to
the region of interest for a particular application. Theralta ;. The resulting BRDF is then normalized to unit reflectance
terization data for a number of samples are chosen, formingt normal incidence by computing
a mesh that covers this subset of the domain. A modification
of virtual goniophotometry [27], described below, is applio fo= fij
obtain the BRDF corresponding to each sample. Each BRDF bl P w(pk) fi
is normalized to unit reflectance at normal incidence. Rpaic B ’
component analysis and interpolation, also describechpal@  Finally, the two dimensional arraf;(j is reduced to a linear ar-
applied to obtain a predictor for the normalized BRDF, gigen rayf of themunique values.
new set of characterization data.

3.2.2. Principal Component Analysis

3.2.1. Virtual BRDF Measurement Principal component analysis was then applied to the linear

To compute the BRDF corresponding to a given a set otrraysf; representing the deflated BRDFs. This results in an
characterization data within the domain of the SPLITS modelorthogonal set of basis vectovsand the corresponding prin-
a variation of virtual goniophotometry [27] is employed.ro  cipal component§ that indicate the linear combination of the
virtual goniophotometer, the hemisphere above the poithen basis vectors required to reconstruct the original BRDFs. A
surface to be measured is divided into a numbeof patches. was done earlier, the eigenvectors beyond a given threghold
A counter,n;, is required for each patch far= 1,...,r. A are discarded. The firétvectorsvy, ..., Vv, are then used in re-
particular incident angle is selected and the model under co construction. Given the principal componeftsorresponding
sideration is appliedN times. Typically,N is selected to be to a new sample, the BRDF may be reconstructed by computing
on the order of 1®rays, although this may vary depending on .
the nature of the BRDF and the desired accuracy. During each f ~ Vi (5)
trial, the incident light may be scattered or absorbed. i§ it ) ) )
scattered, the counter corresponding to the patch containing 21d then expanding the resulting compressed BRDF to obtain

the scattered direction is incremented. The BRDF for eath outhe full BRDF, whereV, is themx £ matrix v,...,v, as its

going patcH is estimated by columns.
f = N 3.2.3. Interpolation of Principal Components
Nwp To determine the principal components to use for a new

sample, recall that the selected domain points form a mesh.
Thus, the characterization dataof the new sample may be
expressed as arfane combination

wherew, is the projected solid angle of the patch. This entire
process is repeated for several incident angles to obtaifi a f

BRDF.

In this framework, rather than fixing the incident direction n n
it is chosen at random, uniformly over the hemisphere, gdor X = Z aiXi, Z ai=1 (6)
each trial. The hemisphere of incoming directions is digdide i=1 i=1
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of the selected domain points. We therefore combine the 4.1. Spectral Component

principal componentf using the same interpolants. That is, To demonstrate the spectral component of the proposedframe
n work, a close up image of a sandy surface has been colour-
f= Z aif;. (7)  ized. The physical and mineralogical properties have been v
i1 ied within the domain of the SPLITS model.
3.2.4. Reconstruction of the Spatial Component 4.1.1. Colourization

Given the characterizationof a particular sand sample, we To give the image the appearance of a surface with the given
construct the spatial component of the BRDF first by determincharacteristics, the spectral component of the framewak w
ing the appropriatefine combinatiom of thex; with which  ysed for colourization. The corresponding reflectance esurv
to represent in the form of Equation (6). We then combine the y(3) was computed according to the framework. Given the
corresponding principal components using Equation (7): EXgpectral power distributios(1) for a particular illuminant, we

panding the resulting linear array yields the estimated BRD may obtain the CIE XYZ tristimulus values,
fi.j for each pair consisting of an incoming paicaind an out-

going patchj. To construct a continuous BRDf(u, v) from
these data points, the centraiglis computed for each patch

X = fo e()r()x() da

i. We then seftfy(u;,u;) = fij;. Values for other directions are 00

computed by interpolation over the hemisphere. Y= fo e()r(4)y(4) da

3.3. Combining the Spectral and Spatial Components Z= f e()r()z(2) da,
0

Using the spectral and spatial components of the proposed
framework, we may now predict the spatial and the spectralvherex, y, andz are the CIE colour matching functions [30].
distributions of reflected light from a sand sample having de For the images presented here, we used the CIE D50 illuminant
fined physical and mineralogical characteristics. Thetspec The CIE 1964 standard observer was used for the colour match-
directional-hemispherical reflectance for zero degre&ém  ing functions. The XYZ tristimulus values were then conedrt
light, described by Equation (4), yields a spectral refieota to standard RGB [30], first by performing the transformation
curve at 16 wavelengths between 400 nm and 700 nm, inclu-

sively. The spatial distributior, for a sand sample with char- R 3.2410 -1.5374 -0.4986\( X
acterization data is constructed as described above. It has the G |=| -09692 18760 00416 || Y
form of a BRDF that has been scaled so that B’ 0.0556 -0.2040 10570 J\ Z
f fu(n,v) coshdv = 1 Each ofR, G’, andB’ was then clamped to the interval, []
Q ' | and gamma corrected using

wheren is the normal to the surface. We may now cgmbine the R = 1.055R” — 0.055
spatial and the spectral components to yield a predictor,

(and similarly forB andG) wherey = 1/2.4.
The image was then colourized using the RGB triple. This

for the BRDF of a sand sample with physical characterizatioyVas accomplished by computing the mean RGB values for the
x. This representation yields an explicit formula for the gum ~ Originalimage. Th|s mean was thgn subtracted from each pixe
tation of the BRDF, enabling it to be incorporated into a wide @nd the RGB triple computed using the proposed framework
variety of rendering algorithms than a pure Monte Carlo apWas added.

proach, ranging from basic path tracing [28] to more advdnce

techniques [29, 21]. 4.1.2. Images
The techniques described above were used to colourize an

image of a patch of a sandy surface. Figures 6 and 7 depict the
variations in colour corresponding to the spectral reflema

Using the proposed framework, we can predict the appeaRredicted using the proposed framework. ,
ance of a sand sample with given physical and mineralogical !N Figure 6, the concentration of iron oxide is varied from
characteristics. To demonstrate the spectral aspect, ue haO.QOl to Q05 in the horizontal direction. The hematdeethite
used the proposed framework to colourize an image of a sand tio,
surface, varying the characterization parameters withgndo-
main of the SPLITS model. The proposed framework was also
used to animate two scenes featuring sandy landscapes. Twaries from O to 1 in the vertical direction.
first portrays a desert scene as the Sun traverses the sky over In Figure 7, the hematifgoethite ratio is varied from 0 to
the course of one day. The second depicts waterlines alongJain the horizontal direction and the degree of saturaticetéw

beach landscape which dry over several hours. content) is varied from 0 to 1 in the vertical direction.

UW'p(x) fx(u, V),

4, Results

hematite
hematite+ goethité




Figure 6: Images depicting the variation of sand colour astimeentration of  Figure 7: Images depicting the variation of sand colour ahiédmeatit¢goethite
iron oxides and the hematigethite ratio are changed. The former parameterratio and the degree of saturation are changed. The formemeder increases
increases to the right, while the latter increases downwatte images were  to the right, while the latter increases downward. The image® generated
generated using the proposed framework. using the proposed framework.

4.2. Animations frame in the animation was then multiplied by the resultingg

As a demonstration of potential applications for the pro-ti€ntimage. More sophisticated techniques could be agpjfie
posed framework, we have created two animations: the firdquired for a particular application.
depicting a desert scene as the Sun traverses the sky over the
course of a day, and the second depicting waterlines along 42-2- Beach Scene
beach drying over time. Selected frames from these animstio 10 create the beach scene, two waterlines were created us-
are presented in Figures 8 and 9, respectively. The full anim ing Brownian motion curves and overlaid onto a flat surface
tions are available with the online version of this manygtai ~ "epresenting the beach landscape. These were used taunstr

at the authors’ website. a texture map for controlling the degree of saturation (wate
content) of the sand. The degree of saturation is graduaHy d
4.2.1. Desert Scene creased over the course of the day (as the Sun traversesjhe sk

An image of a desert landscape was used as the basis froflwas assumed that the sand in this scene is otherwise homo-
which the animation was constructed. A rough approximatior&neous, and that the spatial distribution of the BRDF did no
of the desert landscape (a flat surface) was used in a rapgraci &y With wavelength. The adapted virtual goniophotometer
simulation. The BRDF computed using this framework wasWas applied using 16 flerent values for the degree of satu-

sampled using a cosine distribution. For our purposes, wedo  'ation, ranging from zero to one. The resulting BRDFs were
this to be seficient. However, at increasingly grazing angles, 'éduced to three principal components using the technideies

this approach may become ffieient. For such applications, ’scriped above. A grainy texture was applied as a post-psoces
one might opt to sample the hemisphere according to a closd? 9ive the sand a more natural appearance.

approximation of the BRDF. This could be obtained using, for

example, a combination of generalized cosine lobes [31] or & Conclusion and Future Work

scheme based on elliptical contours [32]. The daylight rhode

developed by Preethaet al. [12] was used to illuminate the ~In thiS paper, we have presented dficgent framework for
scene, with the Sun passing over the sky over the course of a E2mulating the appearance of sandy landscapes. Its design i
hour period. based on the use of high fidelity spectral and spatial data com

The resulting spectral image was converted to standard RGRuted diline using a comprehensive Monte Carlo light transport
using the same technique described above. The following pranodel for sand [11]. This data is then reconstructed on deman
cess was then applied to incorporate the texture of the samd i using analytical formulae derived using robust numericetim
the image. The ground in the original image was isolated an@ds. This approach allows the simulation process to be con-
blurred heavily. The original image was then divided by thetrolled by physically meaningful parameters while enagpline
blurred image pixel by pixel, yielding a quotient image. Eac predictable representation of sand appearance attriatiteter-
active rates. ThefBectiveness of the proposed framework was
demonstrated through sets of rendered images depictirdy san
'http://www.npsg.uvaterloo.ca/misc/sand appearance changes triggered bffedent physical and envi-

ronmental parameters.




Figure 8: Selected frames of an animation sequence depictiegext scene as the Sun traverses the sky over the courseyfad

Figure 9: Selected frames of an animation sequence depicbegeh scene as waterlines dry over several hours duringthisecof a day.

The modular structure of the proposed framework allows asands with other mineral compositions or to account forothe
straightforward incorporation of application driven refinents.  contaminants, such as oil. We would also like to extend SBLIT
For example, to construct a predictor for the spatial distion  itself to simulate additional granular materials. We rekthat
of the light reflected from a sand sample, we adapted virtoral g the main purpose of the proposed framework is generatesesul
niophotometric techniques and interpolated the resultiag  with a high accuraggost ratio. To achieve this goal, it uses as
directly. This approach was chosen for its relative siniflic a basis a comprehensive light transport model (SPLITS)ispec
and to achieve maximum flexibility to represenffeient forms ically designed and validated for the material at hand (ia th
of scattering. By exploiting the isotropism of the modelireg-  case sand), and employs analytical techniques to overdeene t
tion, the memory footprint was reduced by a significant facto inherent computational costs of such a model. In the case of
Depending on the nature of the BRDF required for a particulaanother natural material, SPLITS can be replaced by a model
application, however, one may opt for afdrent representa- specifically designed and validated for this material. Aitgh
tion, such as spherical wavelets, or fitting to an analyBgDF  the reconstruction parameteesd, number of eigenvectors em-
model. ployed to represent the variance of the training set) may nee

As future work, we intend to further explore the modular-to be adapted to the characteristics of fiallent material, the
ity of the proposed framework in order to extend its scope olunderlying framework structure remains the same. Ultilgate
applications to the predictive rendering of other typesaofdk  we expect to implement an online interactive system to gen-
scapes. For instance, more recent techniques in stattstiak  erate predictable representations of appearance aésilhot a
ysis, such as Independent Component Analysis [33], could beumber of natural materials under various environmentat co
used in place of PCA. Additionally, despite the ubiquitoes  ditions.
of sand in the natural environment, there are many other clas(;) j porsey, H. Rushmeier, F. Sillion, Digital Modeling ofttérial Appear-
sifications of soils that may be considered. In our reseaveh, ance, Morgan KaufmariBlsevier, 2007.
have accounted for the most common mineral constituents of2] R. Hunter, R. Harold, The Measurement of Appearance, 2ditida,

. . John Wiley and Sons, New York, NY, 1987.
sand. This framework, however, could be extended to InCIUde[3] G. Valette, S. Revost, L. Lucas, J. &onard, SoDA project: A simulation
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