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Abstract

Sand is one the most complex materials found in nature. Undeniably the correct modelling of its appearance attributes (such as
hue, lightness, and glossiness) is essential to the realistic image synthesis of a wide range of outdoor scenes. Despitethis central
role, to date, few simulation efforts have been specifically directed to this ubiquitous material. In this paper, we present a modular
framework for simulating the appearance of sandy landscapes. It is based on the use of a comprehensive light transport model
specifically designed for granular materials like sand, androbust numerical reconstruction methods. While the former provides
the physical basis for the generation of predictive results, the latter add efficiency to entire simulation process by enabling the
use of analytical formulae to represent the spectral and spatial (scattering related) appearance attributes of sand. The fidelity and
usefulness of the proposed framework are demonstrated through several image sequences depicting sand appearance variations
resulting from changes of mineralogical characteristics and environmental conditions.
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1. Introduction

Sand is a natural particulate material found in a variety of
environments, from beaches and deserts on Earth to dune fields
on Mars. In order to render realistic images depicting such
sandy landscapes, one has to carefully account for its optical
properties. Although an extensive amount of research has been
directed toward the simulation of material appearance [1],few
efforts have been specifically aimed at sand. In this article, we
present a compact framework for the efficient modelling of its
appearance. Since our approach is geared up to the synthesis
of predictive images of real landscapes, we employ physically
meaningful parameters to characterize different sand samples
and control the processes that determine their appearance at-
tributes.

As any material, the appearance of sand is determined by
the spectral and spatial distribution of light interactingwith
it [2]. The former affects colour-related characteristics, and it
is usually measured in terms of reflectance. The latter affects
characteristics such as reflection haze (glossiness) and retrore-
flection, and it is usually measured in terms of bidirectional re-
flectance distribution function (BRDF). The physically-based
modelling of these radiometric quantities is a challengingprob-
lem, however. The difficulties arise from the array of factors
affecting the light interactions with sand, such as the shape, size
and distribution of sand grains (particles), and the presence of
different mineral contaminants and other inorganic substances,
just to name a few.

Email addresses:bwkimmel@cs.uwaterloo.ca (Bradley W. Kimmel),
gvgbaran@curumin.math.uwaterloo.ca (Gladimir V.G. Baranoski)

URL: http://www.npsg.uwaterloo.ca/people/brad (Bradley W.
Kimmel), http://www.curumin.uwaterloo.ca/~gvgbaran (Gladimir
V.G. Baranoski)

In studies involving the geometric modelling of sand sur-
faces, such as the works by Valetteet al. [3] or Onoue and
Nishita [4, 5], the rendering of sand is usually achieved through
the use of texture maps or functions. Such an approach is bound
by the availability of texture data with the resolution, illumina-
tion and appearance characteristics (e.g., hue and lightness) ap-
propriate for the target scene. Few works have expanded upon
this approach, however. For example, Kass and Miller [6] pro-
posed the application of a wetness map to scale reflectance val-
ues in order to achieve the darkening effect caused by the pres-
ence of water in sand samples. Oren and Nayar [7] presented a
generalization of the Lambertian model in order to simulatethe
BRDF of sand surfaces. They compared the output from their
model to measurements performed on a sand sample. Their
simulations, however, were restricted to the spatial domain, i.e.,
spectral reflectance data is required as input to their model. We
remark that the measured spectral reflectance data sets currently
available for sand are limited to a narrow range of illumination
and environmental conditions. Subsequently, Jensenet al. [8]
used an extension of the Henyey-Greenstein phase function to
adjust the degree of forward scattering and achieve varyinglev-
els of wetness in sand samples. It has been demonstrated that
this function bears no relation to the sand characterization pa-
rameters [9]. Hence, its use in this context precludes the gen-
eration of predictive images of sand samples. More recently,
Soulíe et al. [10] used 3D Voronöı diagrams to model the ap-
pearance of compact granular materials such as granite.

Recently, a spectral light transport model for sand (SPLITS)
has been proposed [11]. This model uses Monte Carlo tech-
niques to simulate light interactions with individual sandpar-
ticles generated on the fly. It uses as input the physical pa-
rameters and mineralogical characteristics describing a given
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Name Range (mm)
sand 0.05 – 2.0
silt 0.002 – 0.05
clay < 0.002

Table 1: Soil separates (particle size classes) defined by the United States De-
partment of Agriculture [13].

sand sample, and outputs the radiometric quantities that pro-
vide its measurement of appearance[2], namely spectral re-
flectance and BRDF. Its predictability and accuracy have been
illustrated by the close qualitative and quantitative agreement
between modelled results and actual measured data. Similarto
other stochastic models, SPLITS is computationally expensive
since many trials are required to obtain asymptotically conver-
gent results. Consequently, it is not suitable for online appli-
cations demanding high interactivity rates. It can, however, be
used offline to compute accurate spectral and spatial radiomet-
ric data for sand under different illumination and environmental
conditions. Such data can then be incorporated into a more ef-
ficient modelling framework.

This article presents such a framework, which builds upon
reliable numerical reconstruction techniques to allow forthe ef-
ficient prediction of the full measurement of appearance of sand
samples. This framework takes as input the physical parameters
describing the sample of interest and outputs its correspond-
ing spectral BRDF, which, in turn, can be used on the realistic
rendering of sandy landscapes. It is worth noting that the pro-
posed framework can employ different models. The selection
of SPLITS was motivated by the fact its target application is
sandy landscapes, and this model is the most comprehensive
model for light interaction with sand available in the literature.
Although similar approaches have been used to model other key
components of outdoor scenes, such as the formulation pro-
posed by Preethamet al. [12] to fit data from simulations of
atmospheric scattering responsible for the colour of the sky, to
best of our knowledge, no similar approach for modelling the
appearance of sand has been proposed in the graphics literature
to date.

2. Background

Sand is a particular type of soil. It is composed primarily
of weathered rock, immersed in a medium composed of air and
water called thepore space[14]. The mineral component of a
soil is classified according to its particle size distribution [13].
A series of sieves are used to separate particles falling into size
ranges as indicated in Table 1, with clay being the smallest,fol-
lowed by silt and sand. The fraction of these soil separates by
mass determines the soiltexture, as indicated in Figure 1. Parti-
cles larger than 2 mm in diameter are considered gravel and do
not contribute to the determination of soil texture. Sand consists
of at least 85% sand-sized particles by mass (Figure 2).

The most common mineral constituent of sand is quartz [15].
Although quartz is colourless in pure form, its colour may beaf-
fected by the presence of trace amounts of contaminants [16].
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Figure 1: The soil texture triangle depicting the percentages (by mass) of clay,
silt and sand-sized particles comprising the various soil textural classes [13].
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Figure 2: The shaded region indicates the range for the relative proportions (by
mass) of clay, silt, and sand-sized particles in sand [13].

As depicted in Figure 3, these impurities are crucial in deter-
mining the appearance of sand. The constituent primarily re-
sponsible for determining the appearance of sand is iron ox-
ide [18], which may be present in several forms. Hematite, or
red ochre, imparts a red hue, and is often found in tropical cli-
mates. Goethite, one of the most common mineral colourants
of soils, is responsible for the yellows and browns. Magnetite is
black and is often present in beach and river sands [19]. Addi-
tionally, the presence of water darkens sand, primarily by reduc-
ing the contrast between the refractive index of the pore space
and the refractive index of quartz, which is approximately 1.5
in the visible region of the electromagnetic spectrum. Thisre-
duction in contrast decreases the angle of refraction and reduces
Fresnel reflection at quartz interfaces, thereby introducing a for-
ward scattering bias. Other factors, such as particle size and
shape, also influence the appearance of sand [20].

SPLITS [11] uses standard Monte Carlo techniques to sim-
ulate the appearance of a particulate medium,i.e., to predict its
spectral BRDF. In its formulation, sand particles are modelled

2



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

wavelength (µm)

re
fle

ct
an

ce

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

wavelength (µm)
re

fle
ct

an
ce

Figure 3: A demonstration of the effect caused by iron oxide contamination in
quartz. The dotted line in both plots represents the spectral reflectance of a pure
quartz sample [17]. The dashed line represents the spectral reflectance of a pure
iron oxide sample. The solid line represents the spectral reflectance of an artifi-
cially prepared mixture consisting of 98% (by mass) quartz and2% iron oxide.
Left: The iron oxide is hematite [17].Right: The iron oxide is goethite [17].
The spectral features of hematite (respectively goethite) are clearly visible in
the mixed samples.

as randomly oriented spheroidal particles. Although the authors
describe how arbitrary particle size and shape distributions may
be used, it was found that approximation by prolate spheroids
was sufficient to obtain good quantitative and qualitative recon-
structions of the reflectance properties of sand [11]. Thesepar-
ticles are randomly distributed throughout a medium of water
and air (thepore space) contained within the half-space below
a plane boundary. The particles themselves consist of quartz
cores, possibly mixed with hematite or goethite, or coveredin
a thin coating of hematite or goethite in a kaolinite matrix.The
model parameters include the concentrations of various iron ox-
ides: hematite, goethite, and magnetite, as well as the fraction
of the pore space occupied by water, known as thedegree of
saturation. Additional parameters describe the geometrical ar-
rangement of the mineral constituents [11].

Light interaction with the simulated sand medium proceeds
using standard Monte Carlo techniques. Once a ray penetrates
the extended boundary and enters the medium, light interaction
is simulated with the particles contained therein. In a traditional
ray tracing approach, these particles would be stored individ-
ually, potentially imposing a large memory footprint. Tech-
niques such as spatial subdivision could be used to accelerate
the ray-particle intersection process. Alternatively, the bulk
scattering properties of the medium may be approximated using
pre-computed phase functions [21]. Instead, the SPLITS model
uses a hybrid approach, relying on stochastic methods to deter-
mine the location of the next ray-particle intersection, asillus-
trated in Figure 4. The distance to and orientation of the nearest
particle along the path is determined randomly. Light interac-
tion with that particle is then simulated explicitly using stan-
dard techniques. The particle is subsequently discarded. This
process is repeated until the ray is absorbed or is scatteredback
outside the boundary of the medium.

As with many techniques that use Monte Carlo methods,
many repetitions are required for the result to converge within
acceptable bounds. For SPLITS, or other Monte Carlo material
models, on the order of 106 to 109 rays may be needed, depend-
ing on the requirements of the application. Although the precise
timing varies according to the input parameters used and the

Figure 4: A comparison between a traditional ray tracing approach and that em-
ployed by the SPLITS model [11] is depicted.Top Sequence: For a traditional
ray tracing approach, the particles are explicitly stored.Several ray-particle in-
tersection tests may be required for each leg in the path.Bottom Sequence: For
the SPLITS model, the distance to the next particle is generated randomly ac-
cording to a path length distribution. The orientation of the particle, as well as
a point on the particle surface, are also generated randomly.Light interaction
with the particle is simulated. The ray is either absorbed in the particle or is
scattered. In the latter case, the particle is discarded anda new one is gener-
ated. This process is repeated until the ray is absorbed or isscattered outside of
the medium.

number of trials needed, 108 rays typically requires 145 min-
utes using a single core of an Intel Xeon 2.8 GHz Quad-Core
processor. To overcome this, the authors proposed an analytical
formulation for predicting sand spectral signatures [22].This
formulation predicts the spectral directional-hemispherical re-
flectance [23, 24],

ρ(ωi) =
∫

Ωo

fr (ωi , ωo) dω⊥o , (1)

of a sand sample, given its physical and mineralogical char-
acteristics, and is suitable for applications demanding high in-
teractive rates. Whereas the Monte Carlo approach may re-
quire several hours to compute a spectral signature for a sin-
gle sample, an analytical formulation is capable of computing
several spectral signatures instantaneously in comparison. It
does not, however, account for the spatial distribution of the re-
flected light (i.e., the BRDF), and is therefore not suitable for
computer graphics applications. The framework proposed here
builds upon the techniques described therein to allow for the
prediction of the full measurement of appearance [2] of a given
sand sample.

3. Framework

The proposed analytical framework, illustrated in Figure 5,
is comprised of two main components. The spectral component
predicts the directional-hemispherical reflectance basedon the
physical characteristics of the sand sample. This process is de-
scribed in detail in [22]. For the sake of completeness, it is
also outlined in this paper. The spatial component predictsthe
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Figure 5: Diagram illustrating the proposed framework for predicting the appearance of sandy surfaces. The top half represents the spectral component. The bottom
half represents the spatial component. The two components arethen combined to construct the spectral BRDF.

distribution of reflected light over the hemisphere as a function
of incident direction, wavelength, and the physical characteris-
tics of the sample. The resulting BRDF generated by the spatial
component is scaled to integrate to 1 over the upper hemisphere
for a zero degree incident angle. The final BRDF is then con-
structed by combining the BRDF generated by the spatial com-
ponent with the directional-hemispherical reflectance given by
the spectral component.

3.1. Spectral Component

The purpose of the spectral component is to obtain a pre-
dictor for the spectral directional-hemispherical reflectance of
sand samples, based on the SPLITS model, as a function of
the physical and mineralogical properties of the sample. First,
the characterization data for 3000 samples were chosen ran-
domly from within the domain of the SPLITS model. The
model was then applied to yield the corresponding directional-
hemispherical reflectance curves, using an incident angle of
zero degrees. Principal component analysis (PCA) and regres-
sion techniques were applied, as described below, to obtainthe
predictor. These techniques were selected due to their well
known efficacy, which has been demonstrated in practical appli-
cations across many fields, including computer graphics (e.g.,
[25, 26]). The variation in the directional-hemisphericalre-
flectance with incident angle is accounted for by the spatial
component of this framework to be described later.

3.1.1. Principal Component Analysis
Principal component analysis was applied to the directional-

hemispherical reflectance curves generated by SPLITS. This
process yields an orthogonal set of eigenvectorsui indicating

the directions of decreasing variance in the reflectance data.
These eigenvectors span the same space as the original data
and may be used as basis vectors to reconstruct the original
reflectance curves. The analysis also yields the corresponding
principal components that indicate the linear combinationof the
basis vectors required for this reconstruction.

Since the eigenvectors are ordered by decreasing variance
in the original data, it is typically assumed that eigenvectors be-
yond a given threshold,k, represent noise in the data. These
directions may therefore be discarded by projecting the original
reflectance curves onto the space spanned by the firstk eigen-
vectorsui , . . . ,uk. This process yields a predictor for the spec-
tral direction-hemispherical reflectance,r, of the sample as a
function of corresponding principal componentsr̃, having the
form

r ≈ Ukr̃, (2)

whereUk is then × k matrix having columns consisting of the
first k eigenvectors, andn is the number of wavelengths sam-
pled. In our experiments, we found 16 wavelengths, between
400 nm and 700 nm at 20 nm intervals, to be sufficient to accu-
rately represent the reflectance curves produced by the SPLITS
model. We also found that four eigenvectors were sufficient to
reproduce over 99.9% of the variance in the training set.

3.1.2. Regression
Since the principal componentsr̃ do not have meaningful

physical or mineralogical interpretation themselves, it is neces-
sary to relate these to the physical and mineralogical properties
of the corresponding sand sample. To accomplish this, a non-
linear regression analysis was performed. The original charac-
terization datax is first mapped into a higher dimensional fea-
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ture space via a non-linear functionφ(x) defined using a cubic
monomial basis in the components ofx. Linear regression was
then performed in thism-dimensional feature space. This yields
anm× k matrix W which may be applied to obtain a predictor
for the principal components̃r corresponding to a given set of
characterization data. The predictor has the form

r̃ ≈Wtφ(x). (3)

3.1.3. Reconstruction of the Spectral Reflectance Curve
Combining Equations (2) and (3) yields

r ≈ UkW
tφ(x). (4)

This predicts the spectral directional-hemispherical reflectance
curve r, corresponding to a zero degree incident angle, for a
sand sample having the specified set of characterization data x.

3.2. Spatial Component

In constructing a predictor for the spatial distribution ofthe
light reflected from a sand sample having a given set of physi-
cal and mineralogical characteristics, we first restrict our atten-
tion to subset of the domain of the SPLITS model that includes
the region of interest for a particular application. The charac-
terization data for a number of samples are chosen, forming
a mesh that covers this subset of the domain. A modification
of virtual goniophotometry [27], described below, is applied to
obtain the BRDF corresponding to each sample. Each BRDF
is normalized to unit reflectance at normal incidence. Principal
component analysis and interpolation, also described below, are
applied to obtain a predictor for the normalized BRDF, givena
new set of characterization data.

3.2.1. Virtual BRDF Measurement
To compute the BRDF corresponding to a given a set of

characterization data within the domain of the SPLITS model,
a variation of virtual goniophotometry [27] is employed. For a
virtual goniophotometer, the hemisphere above the point onthe
surface to be measured is divided into a number,r, of patches.
A counter,ni , is required for each patch fori = 1, . . . , r. A
particular incident angle is selected and the model under con-
sideration is appliedN times. Typically,N is selected to be
on the order of 108 rays, although this may vary depending on
the nature of the BRDF and the desired accuracy. During each
trial, the incident light may be scattered or absorbed. If itis
scattered, the counterni corresponding to the patch containing
the scattered direction is incremented. The BRDF for each out-
going patchi is estimated by

fi =
ni

Nωp
,

whereωp is the projected solid angle of the patch. This entire
process is repeated for several incident angles to obtain a full
BRDF.

In this framework, rather than fixing the incident direction,
it is chosen at random, uniformly over the hemisphere, priorto
each trial. The hemisphere of incoming directions is divided in

an analogous manner to the hemisphere of outgoing directions.
In our experiments, we divided each hemisphere into patchesof
equal solid angles. The hemisphere was divided into 31 stacks
in the polar direction. The top stack (representing the normal
direction) was not divided any further. The remaining stacks
were each divided into 30 slices along the azimuthal direction,
yielding a total ofr = 901 patches. Countersni, j are required
for each pair consisting of an incoming patchi and outgoing
patch j, for i = 1, . . . , r, j = 1, . . . , r. If the incident ray is
scattered, the corresponding counterni, j is incremented. If the
incident ray is absorbed, a separate counterni,0 is incremented.
The BRDF corresponding to a pair (i, j) is estimated using

fi, j =
ni, j

ω
( j)
p
∑r

k=0 ni,k

,

whereω( j)
p is the projected solid angle of the outgoing patch.

Due to the nature of the SPLITS BRDF, theO(r2) data
points generated by the above process may be greatly reduced.
The isotropism of the SPLITS BRDF, as well as Helmholtz reci-
procity, are exploited to reduce the error in the two dimensional
array. This was accomplished by replacing eachfi, j with an av-
erage of all the valuesfi′, j′ which are known to be identical to
fi, j . The resulting BRDF is then normalized to unit reflectance
at normal incidence by computing

f̂i, j =
fi, j

∑r
k=1ω

(k)
p fi,k

.

Finally, the two dimensional arraŷfi, j is reduced to a linear ar-
ray f of them unique values.

3.2.2. Principal Component Analysis
Principal component analysis was then applied to the linear

arraysfi representing the deflated BRDFs. This results in an
orthogonal set of basis vectorsvi and the corresponding prin-
cipal components̃fi that indicate the linear combination of the
basis vectors required to reconstruct the original BRDFs. As
was done earlier, the eigenvectors beyond a given thresholdℓ

are discarded. The firstℓ vectorsv1, . . . , vℓ are then used in re-
construction. Given the principal componentsf̃ corresponding
to a new sample, the BRDF may be reconstructed by computing

f ≈ Vℓ f̃ (5)

and then expanding the resulting compressed BRDF to obtain
the full BRDF, whereVℓ is them× ℓ matrix v1, . . . , vℓ as its
columns.

3.2.3. Interpolation of Principal Components
To determine the principal components to use for a new

sample, recall that the selected domain points form a mesh.
Thus, the characterization datax of the new sample may be
expressed as an affine combination

x =
n
∑

i=1

αixi ,

n
∑

i=1

αi = 1 (6)
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of the selected domain pointsxi . We therefore combine the
principal components̃fi using the same interpolants. That is,

f̃ =
n
∑

i=1

αi f̃i . (7)

3.2.4. Reconstruction of the Spatial Component
Given the characterizationx of a particular sand sample, we

construct the spatial component of the BRDF first by determin-
ing the appropriate affine combinationα(x)

i of thexi with which
to representx in the form of Equation (6). We then combine the
corresponding principal components using Equation (7). Ex-
panding the resulting linear array yields the estimated BRDF
fi, j for each pair consisting of an incoming patchi and an out-
going patchj. To construct a continuous BRDFfx(u, v) from
these data points, the centroidui is computed for each patch
i. We then setfx(ui ,u j) = fi, j . Values for other directions are
computed by interpolation over the hemisphere.

3.3. Combining the Spectral and Spatial Components

Using the spectral and spatial components of the proposed
framework, we may now predict the spatial and the spectral
distributions of reflected light from a sand sample having de-
fined physical and mineralogical characteristics. The spectral
directional-hemispherical reflectance for zero degree incident
light, described by Equation (4), yields a spectral reflectance
curve at 16 wavelengths between 400 nm and 700 nm, inclu-
sively. The spatial distributionfx for a sand sample with char-
acterization datax is constructed as described above. It has the
form of a BRDF that has been scaled so that

∫

Ω

fx(n, v) cosθ dv = 1,

wheren is the normal to the surface. We may now combine the
spatial and the spectral components to yield a predictor,

UkW
tφ(x) fx(u, v),

for the BRDF of a sand sample with physical characterization
x. This representation yields an explicit formula for the compu-
tation of the BRDF, enabling it to be incorporated into a wider
variety of rendering algorithms than a pure Monte Carlo ap-
proach, ranging from basic path tracing [28] to more advanced
techniques [29, 21].

4. Results

Using the proposed framework, we can predict the appear-
ance of a sand sample with given physical and mineralogical
characteristics. To demonstrate the spectral aspect, we have
used the proposed framework to colourize an image of a sandy
surface, varying the characterization parameters within the do-
main of the SPLITS model. The proposed framework was also
used to animate two scenes featuring sandy landscapes. The
first portrays a desert scene as the Sun traverses the sky over
the course of one day. The second depicts waterlines along a
beach landscape which dry over several hours.

4.1. Spectral Component

To demonstrate the spectral component of the proposed frame-
work, a close up image of a sandy surface has been colour-
ized. The physical and mineralogical properties have been var-
ied within the domain of the SPLITS model.

4.1.1. Colourization
To give the image the appearance of a surface with the given

characteristics, the spectral component of the framework was
used for colourization. The corresponding reflectance curve,
r(λ), was computed according to the framework. Given the
spectral power distributione(λ) for a particular illuminant, we
may obtain the CIE XYZ tristimulus values,

X =
∫

∞

0
e(λ)r(λ)x(λ) dλ

Y =
∫

∞

0
e(λ)r(λ)y(λ) dλ

Z =
∫

∞

0
e(λ)r(λ)z(λ) dλ,

wherex, y, andz are the CIE colour matching functions [30].
For the images presented here, we used the CIE D50 illuminant.
The CIE 1964 standard observer was used for the colour match-
ing functions. The XYZ tristimulus values were then converted
to standard RGB [30], first by performing the transformation
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Each ofR′, G′, andB′ was then clamped to the interval [0,1]
and gamma corrected using

R= 1.055R′γ − 0.055,

(and similarly forB andG) whereγ = 1/2.4.
The image was then colourized using the RGB triple. This

was accomplished by computing the mean RGB values for the
original image. This mean was then subtracted from each pixel
and the RGB triple computed using the proposed framework
was added.

4.1.2. Images
The techniques described above were used to colourize an

image of a patch of a sandy surface. Figures 6 and 7 depict the
variations in colour corresponding to the spectral reflectance
predicted using the proposed framework.

In Figure 6, the concentration of iron oxide is varied from
0.001 to 0.05 in the horizontal direction. The hematite/goethite
ratio,

hematite
hematite+ goethite

,

varies from 0 to 1 in the vertical direction.
In Figure 7, the hematite/goethite ratio is varied from 0 to

1 in the horizontal direction and the degree of saturation (water
content) is varied from 0 to 1 in the vertical direction.
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Figure 6: Images depicting the variation of sand colour as theconcentration of
iron oxides and the hematite/goethite ratio are changed. The former parameter
increases to the right, while the latter increases downward. The images were
generated using the proposed framework.

4.2. Animations

As a demonstration of potential applications for the pro-
posed framework, we have created two animations: the first
depicting a desert scene as the Sun traverses the sky over the
course of a day, and the second depicting waterlines along a
beach drying over time. Selected frames from these animations
are presented in Figures 8 and 9, respectively. The full anima-
tions are available with the online version of this manuscript or
at the authors’ website.1

4.2.1. Desert Scene
An image of a desert landscape was used as the basis from

which the animation was constructed. A rough approximation
of the desert landscape (a flat surface) was used in a ray tracing
simulation. The BRDF computed using this framework was
sampled using a cosine distribution. For our purposes, we found
this to be sufficient. However, at increasingly grazing angles,
this approach may become inefficient. For such applications,
one might opt to sample the hemisphere according to a closer
approximation of the BRDF. This could be obtained using, for
example, a combination of generalized cosine lobes [31] or a
scheme based on elliptical contours [32]. The daylight model
developed by Preethamet al. [12] was used to illuminate the
scene, with the Sun passing over the sky over the course of a 12
hour period.

The resulting spectral image was converted to standard RGB
using the same technique described above. The following pro-
cess was then applied to incorporate the texture of the sand into
the image. The ground in the original image was isolated and
blurred heavily. The original image was then divided by the
blurred image pixel by pixel, yielding a quotient image. Each

1http://www.npsg.uwaterloo.ca/misc/sand

Figure 7: Images depicting the variation of sand colour as thehematite/goethite
ratio and the degree of saturation are changed. The former parameter increases
to the right, while the latter increases downward. The imageswere generated
using the proposed framework.

frame in the animation was then multiplied by the resulting quo-
tient image. More sophisticated techniques could be applied if
required for a particular application.

4.2.2. Beach Scene
To create the beach scene, two waterlines were created us-

ing Brownian motion curves and overlaid onto a flat surface
representing the beach landscape. These were used to construct
a texture map for controlling the degree of saturation (water
content) of the sand. The degree of saturation is gradually de-
creased over the course of the day (as the Sun traverses the sky).
It was assumed that the sand in this scene is otherwise homo-
geneous, and that the spatial distribution of the BRDF did not
vary with wavelength. The adapted virtual goniophotometer
was applied using 16 different values for the degree of satu-
ration, ranging from zero to one. The resulting BRDFs were
reduced to three principal components using the techniquesde-
scribed above. A grainy texture was applied as a post-process
to give the sand a more natural appearance.

5. Conclusion and Future Work

In this paper, we have presented an efficient framework for
simulating the appearance of sandy landscapes. Its design is
based on the use of high fidelity spectral and spatial data com-
puted offline using a comprehensive Monte Carlo light transport
model for sand [11]. This data is then reconstructed on demand
using analytical formulae derived using robust numerical meth-
ods. This approach allows the simulation process to be con-
trolled by physically meaningful parameters while enabling the
predictable representation of sand appearance attributesat inter-
active rates. The effectiveness of the proposed framework was
demonstrated through sets of rendered images depicting sand
appearance changes triggered by different physical and envi-
ronmental parameters.
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Figure 8: Selected frames of an animation sequence depicting adesert scene as the Sun traverses the sky over the course of a day.

Figure 9: Selected frames of an animation sequence depicting abeach scene as waterlines dry over several hours during the course of a day.

The modular structure of the proposed framework allows a
straightforward incorporation of application driven refinements.
For example, to construct a predictor for the spatial distribution
of the light reflected from a sand sample, we adapted virtual go-
niophotometric techniques and interpolated the resultingdata
directly. This approach was chosen for its relative simplicity
and to achieve maximum flexibility to represent different forms
of scattering. By exploiting the isotropism of the model in ques-
tion, the memory footprint was reduced by a significant factor.
Depending on the nature of the BRDF required for a particular
application, however, one may opt for a different representa-
tion, such as spherical wavelets, or fitting to an analyticalBRDF
model.

As future work, we intend to further explore the modular-
ity of the proposed framework in order to extend its scope of
applications to the predictive rendering of other types of land-
scapes. For instance, more recent techniques in statistical anal-
ysis, such as Independent Component Analysis [33], could be
used in place of PCA. Additionally, despite the ubiquitousness
of sand in the natural environment, there are many other clas-
sifications of soils that may be considered. In our research,we
have accounted for the most common mineral constituents of
sand. This framework, however, could be extended to include

sands with other mineral compositions or to account for other
contaminants, such as oil. We would also like to extend SPLITS
itself to simulate additional granular materials. We remark that
the main purpose of the proposed framework is generate results
with a high accuracy/cost ratio. To achieve this goal, it uses as
a basis a comprehensive light transport model (SPLITS) specif-
ically designed and validated for the material at hand (in this
case sand), and employs analytical techniques to overcome the
inherent computational costs of such a model. In the case of
another natural material, SPLITS can be replaced by a model
specifically designed and validated for this material. Although
the reconstruction parameters (e.g., number of eigenvectors em-
ployed to represent the variance of the training set) may need
to be adapted to the characteristics of a different material, the
underlying framework structure remains the same. Ultimately,
we expect to implement an online interactive system to gen-
erate predictable representations of appearance attributes for a
number of natural materials under various environmental con-
ditions.
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