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Simulating natural phenomena has always been a focal point for computer graphics research. Its importance goes beyond the
production of appealing presentations, since research in this area can contribute to the scientific understanding of complex
natural processes. The natural phenomena, known as the Aurora Borealis and Aurora Australis, are geomagnetic phenomena
of impressive visual characteristics and remarkable scientific interest. Aurorae present a complex behavior that arises from
interactions between plasma (hot, ionized gases composed of ions, electrons, and neutral atoms) and Earth’s electromagnetic
fields. Previous work on the visual simulation of auroral phenomena have focused on static physical models of their shape, modeled
from primitives, like sine waves. In this article, we focus on the dynamic behavior of the aurora, and we present a physically-based
model to perform 3D visual simulations. The model takes into account the physical parameters and processes directly associated
with plasma flow, and can be extended to simulate the dynamics of other plasma phenomena as well as astrophysical phenomena.
The partial differential equations associated with these processes are solved using a complete multigrid implementation of the
electromagnetic interactions, leading to a simulation of the shape and motion of the auroral displays. In order to illustrate the
applicability of our model, we provide simulation sequences rendered using a distributed forward mapping approach.

Categories and Subject Descriptors: I.3.7 [Computer Graphics]: Three-Dimension Graphics and Realism

General Terms: Algorithms

Additional Key Words and Phrases: Atmospheric effects, natural phenomena, plasma phenomena, rendering

1. INTRODUCTION

The Aurora Borealis, or “Northern Lights”, and Aurora Australis, its southern counterpart, are light
emissions caused by the collision of an ionized stream of charged particles with high altitude atmo-
spheric atoms and molecules [Eather 1980]. These emissions are considered to be among the most
fascinating and mysterious of Nature’s spectacles by those who have been fortunate enough to see
them. Taylor in National Geographic calls them “Earth’s Grand Show of Lights” [Taylor 2001]. An
inherent characteristic of auroral displays is that they move and can change shape both slowly and
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rapidly. These complex and stochastic motions are directly related to the plasma processes. In this
article, a novel physically-based model to perform 3D visual simulations of the dynamics of the auroral
phenomena is presented. Furthermore, auroral surges (Figure 14), which have not been previously
simulated, are also rendered. This model, therefore, enables the simulation of shape and motion of the
aurorae in a realistic manner.

The aurorae are frequently visible at high latitudes. They can also be seen less frequently at lower
latitudes, especially around solar sunspot maxima (a period of great solar turbulence that occurs ap-
proximately every 11 years [Odenwald 2000]). For instance, the last solar cycle of the 20th century
reached its maximum in the year 2000, and it produced amazingly bright aurorae for the next couple
of years. Aurorae are also a prominent visual phenomena in space as seen from spacecrafts orbiting
the Earth. Further afar, they occur on planets with strong magnetic fields such as Jupiter and Saturn.
Hence, the simulation of auroral displays is also of interest for the production of night sky visualiza-
tion sequences used in planetarium shows. Moreover, the algorithms used in our plasma-model may be
applied to the simulation of other plasma-related phenomena, such as gas discharges encountered in
neon and fluorescent lights, welding arcs, and lightning.

On the scientific side, the importance of the visual simulation of auroral dynamics is related to the
links to plasma physics. As much as 99% of the matter in the universe is thought to exist in a plasma
state [Bittencourt 1986; Chen 1984; NRC 1995]. The auroral displays provide a natural laboratory in
which the complex workings of the plasma universe can be studied. Therefore, our simulations can be
used in the evaluation of auroral theories as well as in the visualization of other plasma phenomena.
Furthermore, plasma kinetic theory can be used to study the development of galaxies, since, although
stars in a galaxy are not charged, they behave like particles in a plasma [Bittencourt 1986; Chen 1984;
NRC 1995]. Another area of application might be the study of the effects of nuclear explosions in the
upper atmosphere. These explosions were found to create aurora-like displays [Dupont 2004].

Yet the main motivation for this research is the spellbinding majesty of a moving auroral display
[Taylor 2001].

1.1 Related Work

The spectacular auroral motions and shape changes involve to some extent shear, meaning differential
motions within different parts of a fluid or gaseous material. These motions are common in nature.

Shear eddies occur, for instance, on the surface of water in streams and in smoke curling up from a
fire, and they are responsible for clear-air turbulence and gusty winds [Davis 1992]. The shear found
in the aurorae is associated with plasma processes, and the most fascinating consequences are the
formation of rotational distortions having different spatio-temporal scales.

Blinn and Wolf [Upson et al. 1987] produced a film in 1983 entitled “Jupiter’s Magnetosphere: The
Movie”. In this film, representations of spacecraft observations as well as analytic models of the plasma
and magnetic fields in the Jovian system were employed to visualize the morphology and dynamical
structure of Jupiter’s magnetosphere. To the best of our knowledge, this film represents the first use
of a plasma model by the graphics community. Recent works involving plasma models in the graphics
literature focus on the visualization of plasma phenomena occurring in laboratory experiments. For ex-
ample, Parker et al. [1995] developed a gyrokinetic particle simulation to visualize a plasma turbulence
in a Tokomak (an apparatus for producing controlled fusion reaction in hot plasma), and Ljung et al.
[2000] presented a system for the animation of the evolution of an instability that gives rise to a plasma
surfatron, a mechanism for particle acceleration of importance in particle accelerators, in the context of
electron acceleration in astrophysical shocks and in the solar corona. It is relevant to note the work of
Schussman et al. [2000] who presented techniques for the visualization of magnetic field data from the
DIII-D Tokomak, a fusion facility that conducts both experimental and computational plasma research.
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Recently, Baranoski et al. [2000, 2003] presented a static physically-based algorithm for the render-
ing of auroral displays which accounts for important auroral visual features such as their characteristic
spectral and intensity variation. Their work, however, does not take into account the electromagnetic in-
stabilities responsible for the time varying behavior of the aurorae. Nonetheless, it provides an accurate
framework for the rendering of auroral images. In this article, the dynamical behavior of the aurorae
is modeled by taking into account physical parameters and processes directly associated with plasma
flow. The set of partial differential equations (PDEs) associated with these processes is solved using a
complete multigrid implementation of the electromagnetic interactions between charged particles in
the ionosphere, enabling us to produce a visual display of the “dancing lights”.

The simulation of natural phenomena involving shear and fluid flow is an active area of research
in computer graphics [Foster and Metaxas 1997; Foster and Fedkiw 2001; Kajiya and Herzen 1984;
Myazaki et al. 2001; Stam and Fiume 1993; Stam 1999]. A comprehensive review of computer graph-
ics simulations of fluid flow is beyond the scope of this article; however, we should remark that the
plasma instability responsible for the stochastic and complex nature of the aurorae is similar to the
Kelvin-Helmholtz instability (KHI) for sheared fluids [Tajima 1989]. In spite of that, we believe that a
more natural way to model plasma phenomena is to simulate the equations of plasma flow directly. The
use of a plasma model allows the control of the simulations by auroral physically meaningful parame-
ters. Moreover, the use of a plasma model enables the accurate reproduction of the rapid intermediate
scale motions often seen in the aurorae such as the motion of rays and folds along auroral forms.

Recent works on night sky phenomena have focused on obtaining images that are not only realistic,
but are also predictive. This objective is achieved by adhering to physical principles and incorporating
measured data to the simulations. After all, it is far easier to control a simulation using familiar phys-
ical concepts than through arcane parameters as appropriately stated by Arvo [1995]. As illustrative
examples of this trend, besides the work by Baranoski et al. [2000, 2003] mentioned above, we should
note the works by Nadeau et al. [2001] and Jensen et al. [2001].

Nadeau et al. [2001] presented star and nebula visualization techniques for creating a 3D volu-
metric representation of the Orion Nebula, which was used in a planetarium daily show. Jensen
et al. [2001] developed a physically-based model of the night sky which also has educational ap-
plications. Although the Jensen et al. model does not include auroral displays, their night sky im-
ages can be combined with our auroral simulations. They also highlighted the role of naturally il-
luminated night scenes in the history of image-making and their importance in the area of realistic
rendering.

Simulating plasma instabilities as well as fluid instabilities involves the solution of systems of PDEs.
In these situations, the production of simulation sequences used to depict time dependencies or to
analyze motion requires that such systems be solved repeatedly. Usually standard numerical methods,
such as the Conjugate Gradient (CG) and Fast Fourier Transform (FFT)[Golub and Loan 1989], are
applied. Stam [1995, 1999] has highlighted the theoretical advantages of multigrid methods [Hackbusch
1985] for solving such systems. In order to solve the PDEs arising from our plasma simulations, we
present a practical and fast multigrid implementation. We note that our multigrid implementation
is matrix-free, that is, it does not store the coarse grid matrices. Previous multigrid implementations
found in the computer graphics literature, such as the one by Witkin and Kass [1991] in the their texture
synthesis algorithm, used coarse grids to speed up the computations of explicit steady state solutions.
Here, we use multigrid in the context of time dependent problems, and in each implicit time step, the
multigrid is applied to solve a linear system. It also worth noting that Weimer and Warren [1999] used
a full multigrid approach for fluid flow which is appropriate for solving nonlinear equations. In our
implementation, we used a V-cycle multigrid which is more appropriate for solving linear equations
such as those arising in our simulations.
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Fig. 1. Satellite snapshot of an auroral oval around the Earth’s north magnetic pole. a) Viewed from the satellite position and
b) viewed from a position normal to the Earth’s north pole. (Courtesy of NASA Polar Ultraviolet Imager.)

1.2 Organization

The next section provides an overview of relevant auroral physics concepts and describes the main
motions and shape changes of the aurorae. In Section 3, the modeling framework used in this research
is outlined. Section 4 presents the algorithms used to simulate the dynamics of the auroral phenomena.
The rendering issues are addressed in Section 5. Section 6 presents the results of our simulations and
discusses performance issues. Section 7 outlines applications and directions for future work. Finally,
Section 8 closes the article.

2. AURORAL PHENOMENA

In this section, we outline the main physical aspects directly related to the simulation of auroral dynam-
ics. A reader interested in a detailed description of auroral physics is referred to more comprehensive
texts on these phenomena [Brekke and Egeland 1994; Davis 1992; Eather 1980; Jones 1974; Omholt
1971]. The diagrams of auroral distortions presented in this section use as reference an auroral local co-
ordinate system represented by xyz, where the z-axis corresponds to the direction parallel to the Earth’s
magnetic field vector �B, in the upwards direction, but not necessarily perpendicular to the ground.

2.1 Overview

The particles responsible for the colorful auroral displays are electrons that originate from solar flares
and coronal mass ejections and become the “solar wind” [Burtnyk 2000]. After interacting with the
Earth’s magnetosphere, these particles migrate along the magnetic field lines, and “dive” towards oval
regions around the Earth’s magnetic poles under certain conditions. These regions are called the auroral
ovals. Figure 1 shows a satellite snapshot of an aurora oval around the Earth’s north magnetic pole.

The shape of an aurora is determined by the energy and density of the electrons entering the at-
mosphere as well as the local variations in the Earth’s magnetic and electric fields. The most common
aurorae can be thought of as “curtains” of light emissions from “sheets” of falling electrons, which move
along the Earth’s magnetic field.

As the electrons travel down along the Earth’s magnetic field lines, they suffer many random de-
flections which are caused by collisions with atoms of atmospheric gases such as oxygen and nitrogen.
These deflections spread the electrons out horizontally. When the electrons collide with atmospheric
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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Fig. 2. Line drawings of cross sections of auroral arcs (not to scale) illustrating the three major shear-type rotational distortions:
a) curls, b) folds, and c) spirals. The symbol � denotes a vector normal to the plane of the paper.

constituents, the atoms are excited, and after a period of time, they may emit a photon. Statistically,
several collisions must occur before a photon is emitted. As a result of these photon emissions, the
curtains may be colored, bright yellow-green at the bottom, perhaps red at the top, and a yellow-orange
transition may also be present. Often they form arcs that can extend over 2000km whose width (thick-
ness) may vary from several hundred meters to several kilometers. These arcs can bend and fold, almost
like real curtains, thereby generating bright vertical streaks.

2.2 Auroral Shear-Type Distortions

The sheets of precipitating electrons form an auroral stream that is subject to instabilities responsible
for the shear-type rotational distortions seen in auroral arcs. Hallinan and Davis [1970] identified the
three distinct types of distortions: curls, folds and spirals (Figure 2). Curls are small scale and have a
diameter of 1km or less. Folds are intermediate scale distortions and have a diameter of approximately
20km or less. Spirals, or surges, are the largest auroral distortions and diameters are typically around
20–1300km [Partamies et al. 2001]. In addition to the different spatial scales, these phenomena have
different temporal scales. Curls have a lifetime of a fraction of a second, while folds can exist for more
than a second, and spirals may last minutes.

Curls and folds are responsible for distinct visual features present in auroral displays. The light
emanating from convoluted folds in auroral displays often creates the impression of vertical, or near-
vertical, “stripes” [Bryant 1999]. Despite their highly transient nature, curls are largely responsible for
another important auroral feature, namely, electron beams evolving into thin field-aligned filaments or
“rays”. An auroral ray typically has a vertical dimension up to several hundred kilometers. Curls are
usually 2–10km apart, while folds are approximately 20km apart. Spirals are also relatively common
auroral structures, visible in more than 30% of the Defense Meteorological Satellite Program observa-
tions1 [Davis and Hallinan 1976]. They can form a street of two or more spirals approximately 100km
apart. The spirals in the street usually have similar configuration and size, but they may also grow
monotonically along the auroral display [Davis and Hallinan 1976].

2.3 Auroral Motions

As pointed out by Davis [1992], auroral motions and shape changes seem bewildering, yet they present
some order when examined in detail. Many of the motions and shape changes associated with the
auroral distortions are caused by warping of the incoming particle streams by the attendant magnetic

1http://www.ngdc.noaa.gov/dmsp/dmsp.html.
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Fig. 3. Line drawings illustrating an auroral arc break-up. The symbol � denotes a vector normal to the plane of the paper.

Fig. 4. Sketch showing different stages of an auroral warping process: a) initial arc, b) fold, c) further distorted fold, and d) spiral
array. The symbol � denotes a vector normal to the plane of the paper.

and electric fields. In this section, we outline the most important of these changes according to their
spatial scale.

2.3.1 Small Scale. When an electron particle stream responsible for producing a small scale struc-
ture becomes slightly more dense in a region, it is likely to become contorted and develop a curl [Davis
1992]. The curl formation process is similar to the spiral formation process and leads to essentially the
same final configuration. However, the entire curl formation can occur so rapidly (0.25–0.75s [Trondsen
1998]) that an observer on the ground has difficulty following the process.

2.3.2 Intermediate Scale. Once a curl vortex develops, it tends to cause the formation of another
curl a short distance along the arc. The net result is the development of an array of evenly spaced
curls along the arc, manifesting as rays. If another arc is nearby, the rays come under the influence
of its electrical field and, therefore, move along the arc [Davis 1992]. If the process that leads to curl
formation continues a bit longer, then small, uniformly spaced folds occur, and sometimes the arc may
split into two separate arcs as the folds break apart (Figure 3).

Folds have apparent horizontal velocities in the range of 0–5km/s [Hallinan and Davis 1970]. The
apparent horizontal velocities of curls lie in the range of 0–90km/s, with preferred speeds in the range
of 0–8km/s [Trondsen 1998]. To have a better idea of the magnitude of these speeds, recall that an
auroral arc may extend over the entire field-of-view of an observer on the ground. For this observer
the auroral rays seem to “travel” back and forth between two extreme points in the horizon in-few
seconds.

2.3.3 Large Scale. When an incoming stream of electrons that produces an auroral arc develops a
slight irregularity, the irregularity can grow [Hallinan 1976, 1981; Levy and Hockney 1968; Partamies
et al. 2001]. As it does, the stream becomes distorted, carrying incoming particles to new locations
in the auroral domain [Davis 1992]. The growth of this irregularity depends on the thickness of the
electron stream. The larger the stream length-to-thickness ratio, the faster the irregularity grows with
the distance [Hallinan 1976; Levy and Hockney 1968]. Figure 4 shows an auroral arc being affected by
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.
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the warping process, first developing a fold, and then progressing into a complex spiral shape. These
large auroral vortices have an average speed of 4km/s [Partamies et al. 2001].

3. MODELING FRAMEWORK OVERVIEW

Computer models of plasma can be broadly divided in three kinds: Eulerian, Lagrangian and hybrids
of these [Hockney 1966]. The Eulerian model assumes that plasma behaves like a fluid, or that it obeys
macroscopic differential equations for average quantities. The Lagrangian model follows the motion
of a large number of particles as they move in time under their mutual electromagnetic interactions.
Although this model acts on the microscopic particle level, it allows the particle ensemble to “make
its own mind” about the macroscopic and collective behavior. This aspect is relevant in the simulation
of phenomena with noticeable stochastic traits and different spatio-temporal scales such as aurorae.
We use a hybrid Eulerian-Lagrangian approach in our modeling of auroral phenomena. Such a hybrid
approach has been successfully used in computational physics simulations for many years [Hockney
1966; Levy and Hockney 1968; Hockney and Eastwood 1988].

In many scientific fields, the behavior of natural phenomena is described using PDEs. Recently,
PDE-based modeling and numerical techniques from computational fluid dynamics (CFD) have been
applied to computer graphics, especially for animations involving fluids. For instance, in Fedkiw et al.
[2001], smoke was modeled by inviscid Euler equations. Level set and semi-Lagrangian techniques were
applied in the numerical computation. In Rasmussen et al. [2003], large scale smoke phenomena were
modeled by 2D incompressible Euler equations, together with the Kolmogorov spectrum. In Kunimatsu
et al. [2001], water was modeled by Navier–Stokes equations. The Eulerian approach was adopted and
the volume-of-fluid method was used to track free water surfaces. Another approach is to use semi-
Lagrangian and level set method with inertialess particles [Foster and Fedkiw 2001]. The particle
level set technique was further modified in Enright et al. [2002] to obtain more accurate results. In
Nguyen et al. [2002] and Feldman et al. [2003], fire and explosion were modeled by incompressible Euler
equations. The latter used nonzero velocity divergence to capture fluid expansion during explosion.
Cloud simulation was modeled by Boussinesq’s equations in Miyazaki et al. [2002].

At first glance, the similarities between neutral fluids and plasma [Tang 2002] might suggest that the
CFD formulation would be sufficient to model the behavior of both media. However, in order to perform
predictive simulations of the dynamics of plasma phenomena, one must account for their distinctive
features. For example, turbulence dynamics in plasmas involve electromagnetic fields and a much larger
number of relevant variables than for neutral fluids [Yoshizawa et al. 2001]. Furthermore, while the
effects of global boundary conditions, such as wall boundaries, often play an important role in the growth
of neutral fluid disturbances [Drazin and Reid 1981; Hinze 1975; Yoshizawa 1998], plasma turbulence
is greatly affected by spatial inhomogeneities and plasma configurations. These inhomogeneities are
coupled together to drive or suppress turbulent fluctuations, which often have a very long correlation
length along the magnetic field line and are quasi-two-dimensional [Yoshizawa et al. 2001]. Hence, to
predictively simulate structure formation and transitions in plasma phenomena, such as the aurorae,
one needs to account for the mutual interactions between plasma inhomogeneities and the electric-field
structure and fluctuations.

Although the physical laws that affect the behavior of plasma phenomena, such as the Maxwell’s
equations, are well known, progress in this area was only made possible by advances in computational
methods [Gombosi et al. 2004; Tang 2002]. Generally, an analytical, closed-form solution for these
equations is difficult to obtain. One can only obtain a unique solution by imposing various restrictions
[Volakis and Kempel 1995], and they are normally solved using numerical methods such as finite
difference (FD) [Taflove 2000], finite volume (FV) [Anderson 2001], and finite element (FE) [Silvester
and Ferrari 1990] methods and hybrids of these [Volakis and Kempel 1995]. Among these methods,
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FD’s are the most commonly applied to the PDE formulation of Maxwell’s equations in the time domain
[Anderson 2001]. This method is based on the straight discretization of the differential equations, and
it is suitable for modeling complex media [Kärkkäinen 2002]. This motivated its use in the simulation
algorithms described in this article. In order to accelerate the convergence of the iterative solutions of the
PDEs, we used a multigrid method. Recently, Aruliah and Asher [2002] also used a multigrid scheme to
speed-up the simulation of three-dimensional electromagnetic problems in geophysical regimes. While
in our simulations multigrid is used to solve the Maxwell’s potential equation directly, Aruliah and
Asher [2002] used a multigrid scheme to approximately invert a block diagonal matrix, which, in turn,
was used as a preconditioner for the discretization matrix.

The “electrons” in a plasma simulation correspond to millions of physical electrons. Provided that the
physical phenomena have wavelengths that are long, compared with the average electrons spacings,
and time scales that are short, compared with the time for the graininess to have significant effect, this
description of “electrons” gives an accurate representation and leads to the concept of computational
“superparticle” [Hockney and Eastwood 1988]. The graininess introduced by the paucity of superpar-
ticles is minimized by smoothing the short-range forces. One way of regarding the superparticles is as
finite-sized clouds of electrons, where the position of a superparticle is the center of mass of the clouds
and their velocities the mean velocities of the clouds [Hockney and Eastwood 1988].

We used a similar representation in our simulations in order to minimize computational overhead.
Instead of tracking the around 1012 individual plasma particles that cause auroral phenomena, we
follow the path of superparticles which we regard as beams of electrons. As such, we use normalized
values for the physical quantities involved in our simulations, namely, charge, mass, and permissivity.
The Lagrangian treatment is used to account for the interactions among beams and between beams
and atmospheric constituents. The Eulerian treatment is applied when spatial scales much greater
than the relatively small amplitude motions of the beams are considered.

The usual approach in computer experiments is to devise a model which is sufficiently detailed to
reproduce the important physical aspects faithfully and yet not so detailed that the calculations become
impractical. This approach becomes even more pertinent when the main purpose is to produce visual
simulations whose purpose is to highlight the qualitative features of a given phenomenon. Selecting
the “best” modeling approach depends on the relevant physical length and time scales.

The motion of the electron beams has two components: parallel and perpendicular to the electron
stream. The parallel component is associated with the kinetic energy of the incoming particles. The
perpendicular component is due to the warping of the electron stream. The differences of the magnitudes
of the time scales of these two components [Hallinan 1981; Brekke and Egeland 1994] means that they
can be decoupled without incurring a loss of realism in their visual three dimensional representation.

The key stage of our modeling framework is the simulation of the warping process, which changes the
perpendicular velocity, �v⊥, and the position of electron beams, P , at the top of the electron stream, at
each instance of time. The mathematics of this process can be described by an electro-magnetic version
of the Kelvin-Helmholtz instability (KHI) [Hallinan 1976, 1981; Levy and Hockney 1968; Partamies
et al. 2001]. Section 4 describes the warping algorithm used in our simulations in detail.

The position of each beam at the top of the electron stream is considered as the starting point of
its descending trajectory. The position update resulting from the warping process is associated with
a steady state of incoming particles. A precipitating electron beam is tracked downwards until it be-
comes indistinguishable from the ambient electron population. During their descending trajectories,
the electron beams may be deflected several times due to collisions with atmospheric constituents.
Light emissions may occur at these deflection points, causing the auroral displays. These emissions are
mapped to the screen plane of a virtual camera using a splatting approach [Westover 1991]. Rendering
issues are further examined in Section 5.
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The auroral dynamics simulation uses the auroral local coordinate system defined in Section 2. The
mapping of auroral emissions for rendering purposes uses a global coordinate system represented by
XYZ, where the Y-axis corresponds to the direction normal to the ground.

4. DYNAMICS SIMULATION

The electron beams interact with one another through the electric field, �E, generated by their mutual
electrostatic repulsion, and the Earth’s magnetic field, �B. Thus, the Lorentz force on an electron beam
ek with charge qk , moving with a perpendicular velocity �v⊥

k is

�F k = qk( �E + �v⊥
k × �B), (1)

and the motion of an electron beam of mass mk is determined by Newton’s law

mk
d �v⊥

k

dt
= �F k . (2)

Thus, to update the positions of the electron beams, we need to compute �E and �B. In the auroral
warping simulation, the Earth’s magnetic field is modeled as a uniform magnetic field of strength | �B|.
At any instance of time, the electron beams and, hence �E, are located in the plane perpendicular to �B.
By Gauss’ law, �E satisfies

∇ · �E = ρ

ε0
, (3)

where ε0 is the permissivity of free space, and ρ is the charge density function

ρ(P ) =
N∑

k=1

qkδ(P − Pk). (4)

Here we model the small mass, low density electron beams with charge qk , at the position Pk , as point
particles via the Dirac delta function δ(·). From the Maxwell equations, which describe the dynamics of
charged particles interacting with an electromagnetic field, we obtain

∇ × �E = 0. (5)

The electrostatic potential φ is introduced such that

�E = −∇φ, (6)

and the divergence of the potential gradient results in the Poisson Equation given by

−∇2φ = ρ

ε0
, (7)

where ∇2φ is the Laplacian of the potential. By solving Equations (2) and (7) over time, we can model
the perpendicular motion of the electron beams, which is the crucial aspect of the auroral dynamics.

4.1 Warping Algorithm

The potential Equation (7) and the electron beam velocity Equations (2) form a coupled continuous-
particle system, which is simulated using the particle-mesh method exploiting the force-at-a-point
formulation and the field equation for the potential. For the velocity equation, we use a Lagrangian
grid approach, whereas for the potential equation, we use an Eulerian approach as suggested by Levy
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Fig. 5. A cross-section of an auroral stream, modeled by a strip of electron beams with periodic and Neuman boundary conditions,
along the x-axis and y-axis, respectively.

and Hockney [1968]. The perpendicular velocities and positions of the electron beams are advanced in
time as follows:

(1) from the positions of the electron beams, a charge distribution (ρ) is derived;
(2) from the charge distribution, using Poisson Equation (7), the electrostatic potential is calculated;
(3) from the potential, the electric field ( �E) acting on each electron beam is derived using Equation (6);
(4) Newton’s law of motion (Equation (2)), using the local electron field and the Earth’s magnetic field

( �B) is then integrated resulting in a new position and velocity for each electron beam.

The cycle is then repeated at step (1). The aurora dynamics is initiated from incoming sheets of particles
at the auroral oval (Figure 1) forming an auroral stream, which is modeled by a strip of incoming electron
beams with periodic and Neuman boundary conditions along the x-axis and y-axis respectively. The strip
in Figure 5 is a small cross-section of part of an auroral oval (Figure 1). As an initial condition, the
electron beams are distributed randomly in the interior of this strip of thickness γ and length λ, and
have zero perpendicular velocity. Faster initial growth of auroral distortions will occur for larger values
of the λ/γ ratio.

4.1.1 Charge Assignment. In the hybrid Eulerian-Lagrangian formulation, the field and particle
quantities are defined on different grids. To obtain the charge density at mesh points from the distri-
bution of particles, we allocate the particle charges based on the CIC (cloud-in-cell) [Birdsall and Fuss
1969] charge assignment scheme: the charge density ρi, j , at the grid point G(i, j ), is given by the sum of
weighted charges, ωk qk , of the electron beams ek in the cells surrounding the grid point G(i, j ), divided
by the cell area:

ρi, j = 1
cell area

∑

ek∈cells with vertex(i, j )

ωk qk ,

as indicated in Figure 6(a). However, instead of finding which electron beams contribute to the charge
at the grid point G(i, j ), we sweep through each electron beam and distribute its charge with weights
ωk

i∗, j ∗ , i∗ ∈ {i, i+1}, j ∗ ∈ { j , j +1}, to the vertices of the grid cell it belongs to, as indicated in Figure 6(b).
To be consistent with the definition of the continuous charge density (4), the weight ωk

i, j must be given
by

ωk
i, j = Sε(G(i, j ) − Pk),

where Sε(·) is a modified Dirac delta function with compact support parameterized by ε, which has the
property that

lim
ε→0

Sε(·) = δ(·),
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Fig. 6. a) Charge accumulation at grid point G(i, j ). b) Charge distribution of ek to the neighboring grid points.

in the sense of distributions. It can be interpreted physically by ascribing a finite width (ε) to the
distribution of charge in each particle. In the CIC scheme, Sε is given by the hat-shape function [Birdsall
and Fuss 1969].

4.1.2 Poisson Equation. The gradient of the potential function satisfies Equation (7). On an Eulerian
grid with mesh size h, the partial differential equation can be discretized as

4φi, j − φi+1, j − φi−1, j − φi, j−1 − φi, j+1

h2
= ρi, j

ε0
,

which leads to a set of linear equations, denoted by A� = ρ, where � is a vector of unknown potentials
and ρ is a vector of (scaled) charge densities. The matrix A is large, sparse, symmetric, and positive
definite. The complexity of most matrix solvers depends on the size of A. For the simulation of auroral
dynamics, a fine grid is required to resolve the layer structure, especially when the formation of surges
is simulated. Thus, an efficient linear solver is indispensable.

Direct methods, such as banded Gaussian elimination (GE), can be used to exploit the banded struc-
ture of A. For matrices of size n × n, the complexity of banded GE is O(n2), which is still computation-
ally impractical. Iterative methods, such as preconditioned conjugate gradient (PCG) with incomplete
Cholesky factorization as preconditioner, have been successfully used in computer graphics for fluid
simulations [Fedkiw et al. 2001; Foster and Fedkiw 2001]. While the theoretical complexity is reduced
to O(n1.5), it is still expensive for the long time simulations presented in this article, which require fine
grids as stated above. The FFT method [Stam 1999] can improve the complexity further to O(n log2 n),
but still it is not optimal in the sense given below.

4.1.3 A Practical Multigrid Implementation. The multigrid method is an optimal scheme in which
the convergence rate is independent of the problem size [Trottenber et al. 2001]. Thus, as opposed to
the methods previously discussed, it has a linear complexity of O(n), where the complexity constant is
known to be small for Poisson equations, typically smaller than 10. It exploits the properties of the linear
equations at the PDE level, rather than the matrix structure. It was first proposed by Fedorenko [1961]
in the 1960’s, and made popular by Brandt [1977] and others for scientific applications. We refer the
interested reader to the survey paper by Chan and Wan [2000] on recent developments of linear elliptic
multigrid methods. Early attempts in using multigrid methods to solve a multiple scattering problem
[Stam 1995] raised the issue of memory due to storage of coarse grid quantities. Here, we introduce
a matrix-free implementation which is extremely memory-efficient. We remark that similar multigrid
schemes can also be used in other plasma and astrophysical simulations as mentioned in Section 7.

The idea of the multigrid method is to accelerate the convergence of the iterations by solving the PDEs
on a sequence of coarse grids. The basic principle is to eliminate high frequency errors by relaxation
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Fig. 7. A multigrid V-cycle: presmoothing, restriction, coarse grid correction, interpolation and post-smoothing.

smoothing, and low frequency errors by coarse grid correction. Let �h be the current approximate
solution on the fine grid with mesh size h, and εh = � − �h be the error. By the dissipative nature of
the Poisson equation, the error in the numerical solution, �̃h, obtained from a few relaxation steps, will
become smooth. Thus, one can easily compute an accurate coarse grid approximation by projecting the
residual error, rh = ρ − A�̃h, onto the coarse grid with mesh size H and solve the coarse grid error
equation

AHεH = RH
h rh,

with less computational effort, since there are fewer grid points on the coarse grid. Here AH is the
coarse grid matrix and RH

h the full weighting restriction operator. Finally, the coarse grid error is then
interpolated back to the fine grid to update the fine grid solution

�new = �̃h + Ph
H εH ,

where Ph
H is the linear interpolation operator. This process completes one multigrid V-cycle (Figure 7).

We note that only the actions of the coarse grid, interpolation, and restriction operators are needed.
Thus, we never form nor store these matrices. Consequently, only 3.5 fine grid vectors are needed in
our implementation, which requires even less memory than CG. For the interested reader, an iteration
count comparison between our multigrid method and PCG can be found in the original technical report
written by the authors [Baranoski et al. 2002].

4.1.4 Velocity and Position Update. The electric field Ei, j is defined on the Eulerian grid whose value
is given by numerical differentiation of φi, j . However, electron beams are located on the Lagrangian
grid, which, in general, does not overlap with the Eulerian. Thus, the electric field on an electron beam
ek , located at Pk , is obtained by interpolating the electric fields at the nearest four corners, that is, the
reverse process of charge distribution as in Figure 6(b). We then update the perpendicular velocities
and positions of the electron beams by integrating Equation (2).

4.2 Trajectories of Electron Beams

The electron beam’s velocity vector, �v, is defined as the overall direction of progression during its de-
scending motion. As the beams travel down, they may suffer several random deflections. Their trajec-
tories are simulated incrementally using the stochastic algorithm described by Baranoski et al. [2003].
This algorithm takes into account the spatial inhomogeneity of auroral electrons and their initial en-
ergy to compute the deflection points and the displacements of an electron beam along the magnetic
field lines.
ACM Transactions on Graphics, Vol. 24, No. 1, January 2005.



Simulating the Dynamics of Auroral Phenomena • 49

Fig. 8. Sketch showing that the apparent surface brightness of an auroral display is proportional to the number of emissions
along the line of sight represented by the vector �s.

Fig. 9. Diagram showing angular displacements used to distributed emission rays.

Each path is simulated incrementally, using a parametric displacement u ∈ [0..1] such that

unew = uold + (du ξ1),

where ξ1 is an uniformly distributed random number in the interval [0..1], and du corresponds to a
parametric interval (dimensionless) between collisions which is adjusted according to the initial energy
of the incoming particles. For instance, an electron with 10 keV (60000km/s) can collide 300 times
before becoming indistinguishable from the ambient electrons at an altitude of about 100km above the
ground [Brekke and Egeland 1994]. In this case, we could set du = 1

300 .

5. RENDERING ISSUES

Aurorae are view-dependent phenomena, that is, the apparent surface brightness of an aurora is pro-
portional to the integrated emission-per-unit volume along the line of sight (Figure 8). Hence, a forward
mapping, or splatting, approach can be used to map auroral emissions to the screen plane [Baranoski
et al. 2003; Westover 1991].

Recall that after being hit by an electron, an atmospheric atom becomes excited, and, after a period
of time, it may emit a photon. Statistically, the intensity contribution spreads radially around the
propagation direction, and follows a Gaussian distribution along that dimension [Borovsky et al. 1991;
Borovsky and Suszcynsky 1993]. In order to account for this phenomenon, we implemented an algorithm
to perform a distributed forward mapping of auroral emissions. The world coordinates for each deflection
point are used to compute the line of sight vector �s. This vector is randomly perturbed through angular
displacements α and β (Figure 9) to generate a light emission ray �r. The angle α represents the azimuthal
angle around �s. The angle β represents the polar angle with respect to �s, and it corresponds to the
exponential glow decay observed in auroral arcs [Borovsky and Suszcynsky 1993]. These angles are
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given by

(α, β) = (1 − e− γ ξ2
240 , 2πξ3),

where ξ2 and ξ3 are uniformly distributed random numbers ∈ [0, 1], and γ represents the initial thick-
ness of the auroral stream.

The accuracy and performance of the simulation is dependent on the number, N , of emission rays.
Experiments show, however, asymptotic convergence of the results for larger values of N .

The emissions mapped to the screen plane are scaled according to auroral spectral emission and
intensity profiles [Baranoski et al. 2003], which correlate with the height of the emission point [Brekke
and Egeland 1994]. The conversion of auroral spectral emissions to a color space follows a straight-
forward CIE XYZ to RGB mapping procedure. We include the strongest auroral spectral emissions
in our simulations, namely, 630.0nm (red line), 557.7nm (green line) and 427.8nm (blue line). More
wavelengths can be considered at the expense of higher computational time.

The different lifetimes of transition states in auroral emissions—110s for the red line, 0.7s for the
green line, and 0.001s for the blue line—cause the photon emissions to occur in distinct volumes around
the principal direction of emission. In order to simulate this distribution of auroral emissions, we
convolve the image with a color-dependent Gaussian low-pass filter [Baranoski et al. 2003; Westover
1991].

An auroral display also exhibits global temporal variations, captured in photographs as blurred forms,
due to finite exposure times. For simulating this global blurring effect we perform a convolution using a
temporal low-pass filter [Baranoski et al. 2000; Castleman 1996]. The longer the sampled window is in
time, the blurrier the results, similar to the effects captured in real photographs with longer exposure
times.

The final stage of our rendering pipeline consists of blending the auroral display with a night sky
background and a foreground. We use a composite approach in which we initialize the color buffer with
the background scene, superimpose the auroral display, and, finally, filter out regions of the image that
would be covered by foreground objects.

6. RESULTS

In this section, we present examples of simulations of auroral motions and shape changes at different
spatio-temporal scales.2 The stochastic nature of auroral displays reduces the viability of a quantitative
analysis of their visual simulations. An alternative available is to qualitatively analyze the simulations
in comparison with photographs of real auroral displays. However, as mentioned earlier, photographs of
an aurora are usually blurred due to low light conditions and significant exposure times, and sometimes
present background artifacts caused by grain when high speed film is used (Figures 10 and 13). For
this reason we accounted for photographic blur in our simulations.

Despite the blur, features readily recognizable by viewers in real aurorae were preserved, for example,
presence of rayed structures and vertical distribution of intensity (Figure 11), as well as their charac-
teristic spatio-temporal variations. This aspect was verified through comparisons with observations of
the real phenomena, including the positive feedback from scientists working in the auroral imaging
field [Hallinan 2001; Trondsen 2001].

Figures 11, 12 and 14 present still frames from simulation sequences produced using our model. For
these sequences, we used a 1024×1024 mesh for the starting points, and varying values for the vertical
displacement of the electron beams. The length and thickness of the initial auroral stream used in these

2The simulation sequences (quicktime format) described in this article are available at http://www.curumin.uwaterloo.
ca/ ˜ gvgbaran/dynamics.html.
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Fig. 10. Photograph of an auroral spiral. (Courtesy of Norbert Rosing.)

Fig. 11. Simulation of an auroral spiral showing a rayed structure and an arc break up.

Fig. 12. Frames of a simulation sequence showing the motions and shape changes of an auroral rayed band.
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Fig. 13. Black and white all-sky photographs showing different stages of an auroral surge formation. (Courtesy of Kirsti
Kauristie.)

simulations were 2000km, and 9km, respectively. The computations were performed on a SGI550, with
dual 850Mhz Pentium3 processors.

Figure 12 presents six frames from a simulation sequence showing the motions and shape changes
of an auroral rayed band. In this sequence, one can observe the rapid movement of auroral rays,
the formation and motion of folds, and a rotational distortion of the auroral band. In this simulation,
the number of electron beams was 4 × 104, with a parametric collision interval (Section 4.2) of 0.05.
The time spent to compute the starting points and the descending trajectories for each time step was
2.6s and 10.8s, respectively. The frames were rendered at a resolution of 320 × 240 pixels, and using
10 rays per-emission-point.

Figure 13 presents two all-sky photographs taken during an auroral surge formation in the northern
hemisphere. Figure 14 presents three frames from a simulation sequence, illustrating a simulation of
such natural phenomena at twice normal speed. In this simulation, the number of electrons beams was
104, with a parametric collision interval of 0.1. The time spent to compute the starting points and the
descending trajectories for each time step was 1.7s and 6s, respectively. The frames were rendered at a
resolution of 480 × 360 pixels, and using 5 rays per-emission-point.

Recently, scientists, using NASA’s polar spacecraft, have captured images of the aurorae on film as
they were dancing simultaneously around both magnetic poles3. This film shows the Aurora Borealis
and Aurora Australis expanding and brightening, in parallel, at opposite ends of the Earth, confirming
the three-century-old theory that aurorae in the northern and southern hemisphere are nearly mirror
images of each other. In the case of auroral spirals, the distinct feature is their opposite sense of
rotation. Usually they are counterclockwise in the southern hemisphere when viewed from the ground,
and clockwise in the northern hemisphere.

Figure 15 presents six frames from a simulation sequence, illustrating an auroral surge formation in
the southern hemisphere. In this sequence, besides the warping process leading to an auroral spiral, we
can also notice the formation and motion of folds. In this simulation, there were 104 electrons beams,
with a parametric collision interval of 0.2. The time spent to compute the starting points and the
descending trajectories for each time step was 1.7s and 10.27s, respectively. The frames were rendered
at a resolution of 320 × 240 pixels, and using 20 rays per-emission-point.

Using the multigrid algorithm, we were able to reduce substantially the time required in the warp-
ing computations. For instance, on the 1024 × 1024 auroral mesh used in our simulations, multi-
grid is 96 times faster than CG. Due to this reduction, the computation of the descending trajectories

3http://eiger.physics.uiowa.edu/ ˜ vis/conjugate aurora/.
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Fig. 14. Frames from a simulation sequence illustrating an auroral surge (spiral) formation in the northern hemisphere.

became the bottleneck of our simulation pipeline, with its cost growing linearly with respect to the
number of electron beams. A divide-and-conquer strategy can be applied, however, to decrease the
total running time of these computations. In other words, one can process n trajectories separately
in several processors. For instance, for 105 electron beams, Baranoski and Rokne [2002] obtained a
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Fig. 15. Frames of a simulation sequence illustrating an auroral surge formation in the southern hemisphere.

speedup of 4.6 using five Compaq Alpha 500Mhz PWS processors. Nonetheless, we believe that there
is still room for improvement on the parallelization of the algorithms. We intend to continue to work
on the parallelization, and to exploit graphics hardware for the real time simulation of moving auroral
displays.

7. DIRECTIONS FOR APPLICATIONS AND FUTURE RESEARCH

The physical simulation and visual representation of natural phenomena is an evolving area of re-
search within computer graphics where significant progress has been made. However, the important
class of natural processes collectively known as plasma phenomena present significant computational
challenges and remain relatively unexplored [Gombosi et al. 2004]. The aurorae are among the most
spectacular and most important from a scientific point of view due to the link they provide between
solar activities and the Earth. In fact, the aurorae can be thought of as “footprints” of events and en-
ergetic process occurring in the Earth’s magnetosphere. For this reason, even after 200 years of study,
an astonishing amount of basic research is still being done on the aurora and its electromagnetic and
electrodynamical properties [Paxton and Meng 1999].

The complexities of numerical simulations in the physical sciences often require visual representa-
tions. Complex situations, for example, those found in plasma studies, may be dissected into simpler
components to help the understanding of the underlying phenomena and obtain a clear theoretical
picture [Tang 2002]. Moreover, animated sequences derived from computer simulations give a picture
of a simulated phenomenon through time, illustrating qualitative features of any instabilities that may
not be evident from a theoretical point of view. In fact, visualization plays a critical role in going from
the raw nonlinear solution of the complex equations governing these phenomena to a simplified model
explaining the essential underlying plasma physics as Parker et al. [1995] appropriately stated. This
contribution of computer graphics to scientific applications was highlighted by D. Greenberg in the
Steven Coons Award Lecture in 1987 [Greenberg 1988]:

If computer graphics is to have a role in improving the future of our civilization, the real
value will be in its application to science, engineering and design.
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Viewed in this context, we foresee three main directions for applications and future research associ-
ated with the work presented in this article:

—visualization of plasma phenomena,
—visualization of Earth’s electro-magnetic environment in space, and
—visualization of astrophysical phenomena.

In order to understand plasma phenomena, a combination of extensive data analysis, theory, model-
ing, laboratory experiments, and in situ (space born) observation is required. Plasma science impacts
daily life in many significant ways. In 1995, a panel of scientists at the National Research Council [NRC
1995] recommended that NASA and NSF fund a vigorous observational program related to plasma sci-
ence, both on Earth and in space. The program should include both in situ and ground-based facilities,
properly balanced with programs in theory, modeling, and laboratory experiments (see also NRC 2003).

In our everyday lives, we encounter plasma in many situations, such as the flash of a lightning bolt,
the conducting of gas inside a fluorescent tube or neon sign, the ionization in a rocket exhaust, gas
lasers, and lightning discharges as some of the more familiar examples [Chen 1984; Smirnov 2001].
In the neighborhood of Earth, one encounters plasma in the Van Allen radiation belts and the solar
winds as soon as one leaves the Earth’s atmosphere. Further afar, stellar interiors and atmospheres, as
well as gaseous nebulae, are composed of plasma. For example, the Crab Nebula contains a magnetic
field and it is a rich source of plasma phenomena. It also contains a visual pulsar. Theories of pulsars
picture them as rapidly rotating neutron stars with plasmas emitting synchrotron radiation from the
surface [Bittencourt 1986; Chen 1984]. Occasionally, one also encounters an entirely new physical
situation which is unlike anything previously observed either in space or in laboratory, and this opens
new avenues of research. One example is the dusty plasma of comets and planetary rings that are
dominated by the dynamics of charged macroparticles for which gravitational and electromagnetic
effects are of comparable importance [NRC 1995].

In the type of particle model used in this article, the computer particle retains much of the identity
of the atomic constituents of the material being simulated, yet does not correspond one-to-one to the
simulated particles as do atoms to particles in molecular dynamics simulations. The “electron beams” or
“superparticles” in these simulations correspond to millions of physical electrons. The plasma phenom-
ena mentioned above can also be simulated using this approach. Furthermore, all of the mathematical
models to which particle simulation methods are applied can be formulated as a set of particles inter-
acting through fields. The most important field equation is the Poisson’s equation, which pertains to all
plasma examples listed above, and it is also found in the simulation of clustering of galaxies [Hockney
and Eastwood 1988].

Electromagnetism is a fundamental topic [Belcher and Bessette 2001]. It is, however, one of the
most difficult subjects for students to master. Belcher and Bessette [2001] addressed this difficulty
by creating 3D field line animations used to aid student intuition about electromagnetic phenomena
occurring in the laboratory. The auroral displays are similarly caused by electromagnetic phenomena,
but at a planetary scale, that is, the solar wind impinges on the Earth’s magnetosphere, which shields
us from this radiation, distorting the field lines of the magnetosphere in the process. Visualization of
such phenomena is important not only from a educational point of view [Nylund and Holland 1999], but
also from a research point of view since it can be used to support improved predictions of space weather
and its effects on systems operating in space as well as on Earth’s surface [Williams et al. 1999]. We
also note that the magnetic storms responsible for auroral displays can damage satellites, power grids,
pipelines, and spacecrafts [Paxton and Meng 1999; Odenwald 2000].

Plasma simulations are relevant to almost every area of astrophysics, ranging from stellar and inter-
stellar plasmas, to star clusters and galaxies [NRC 1995]. The significant mutual interactions among
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stars and galaxies are provided by Newtonian gravity. The latter is an inverse-square force like the
electrostatic force, so it is natural that there should be many similarities between the dynamics of these
systems and plasma physics [Binney 1993]. For example, both stellar dynamics and plasma dynamics
account for shear (the simplest model of a stellar disc, which dominates most of galaxies, is the so-called
shearing sheet [Binney 1993]) and can be simulated using “superparticles” models. Superparticles in a
galaxy model represent millions of real stars. Length and time scales are determined by the dimensions
and motion of the spiral arm structures. Collisional effects are made small by smoothing the force of
interaction at short range, and by having a large number of superparticles within the range of smooth-
ing [Hockney and Eastwood 1988]. One of the principal applications of such a model is in the study of
spiral patterns arising in galaxies [Hockney and Eastwood 1988]. Such patterns are visually similar to
the spiral structures arising from our auroral dynamics simulation. This is not a surprise considering
that several processes familiar from plasma physics play important roles in structuring stellar systems.
Obviously, gravity, unlike the electrostatic interaction, is always attractive, and this difference between
the two systems invariably leaves its imprint [Binney 1993]. Consequently, there are also differences be-
tween the way a given process works in the plasma and stellar-dynamics. We believe, however, that such
cross-fertilization is beneficial for both areas of research, and our intent is to fully explore these parallels.

8. CONCLUSION

In this article, we have presented a novel physically-based model for the 3D visual simulation of auroral
dynamics. The model employs a complete multigrid PDE simulation of the electromagnetic interactions
between auroral electrons. It allows an accurate and efficient visualization of auroral phenomena at
different spatio-temporal scales. As far as we have been able to ascertain, this article describes the first
physically-based visual simulations of these phenomena in the scientific literature, leading to realistic
visualization of the shape and the motion of these fascinating phenomena. Previous auroral simulations
have been restricted to the static and KHI free case [Baranoski et al. 2000].

One of the most important research problems facing the computer graphics field since its beginning,
is the correct simulation of physical phenomena. As a result, the simulation of natural phenomena such
as water, fire, clouds, smoke and so forth. has attracted significant research efforts. These efforts have
been concentrated in the less than 1% of the universe where plasmas are not readily apparent, leaving
the remaining 99% filled with plasma phenomena to be investigated by future researchers. Although
scientific and commercial applications have different constraints, we believe that computer graphics
researchers working in either area can benefit from efficient and predictive algorithms for the realistic
simulation of plasma phenomena such as the majestic Northern Lights.
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