Visually Assessing Maize Leaves: From Spectral Sampling to High-Fidelity Color Reproduction

> Gladimir V. G. Baranoski Natural Phenomena Simulation Group University of Waterloo, Canada

SPIE Remote Sensing Berlin, Germany, September 5-7, 2022

□ Introduction

Methodology

Results and Discussion

□ Conclusion

Introduction

• Maize (corn) crops are extensively used in food and biofuel production worldwide

- A number of protocols have been proposed to use leaf color as an indicator of biophysical phenomena affecting these plants' physiology and appearance
- Several vegetation indices, employing leaf's reflectance and transmittance samples, have also been formulated to monitor the development of these plants

- Pros and cons of each strategy
 - The complexity of the color perception process can make the correct interpretation of a leaf's chromatic attributes a difficult task

- Spectral vegetation indices:
 - are not subject to color perception issues (e.g., metamerisms)
 - require a number of spectral samples obtained using specialized sensors
 - are usually formulated to assess specific conditions affecting the plants

The visual feedback provided by foliar chromatic attributes allows for a rapid screening of the net effect of several factors affecting a plant

How about the combined used of indices and color-based strategies?

- Leaf chromatic attributes can be obtained using spectral reflectance and transmittance samples employed in the computation of vegetation indices
- Ideally, one would like to employ a number of spectral samples that would maximize the color fidelity to sensor costs ratio

How many spectral reflectance and transmittance samples would be sufficient to obtain a high-fidelity reproduction of maize leaves' colors? Methodology

Materials

• Specimens (M1 and M2) with measured spectral reflectance and transmittance curves made available in the LOPEX (Leaf Optical Experiments 1993) database

angle of incidence of 8 degrees

> Approach

Computation of maize leaves' chromatic attributes considering distinct light interaction scenarios and sparse spectral sampling resolutions

- Visual inspection of colored swatches (generated using the computed attributes)
- Assessment of their color fidelity using a device independent CIE-based metric

Light interaction variables

- Specimens' light propagation behaviours
 - Reflected light only (e.g., leaf over an opaque surface)
 - Reflected and transmitted light

- Indoors and outdoors illumination settings
 - Standard CIE A illuminant (tungsten lamp)
 - Standard CIE D65 illuminant (average daylight)

Selected spectral resolutions

• Illuminants' spectral power curves and specimens' spectral reflectance and transmittance curves are sampled using the same spectral intervals

N	Spectral Intervals	Sampled Wavelengths
3	Variable	465, 551 and 608 nm (monitor chromaticities)
5	75nm	$400, 475, 550, 625 \text{ and } 700 \ nm$
6	60nm	$400, 460, 520, 580, 640 \text{ and } 700 \ nm$
7	50nm	400, 450, 500, 550, 600, 650 and 700 nm
8	37nm	$400, 437, 474, 511, 548, 585, 622, 659 \text{ and } 696 \ nm$
301	$1 \ nm$	all from 400 to 700 nm (full spectral resolution)

- Standard monitor chromaticy coordinates are used for comparison purposes
- Full spectral resolution (N=301) employed as a reference for fidelity assessments

CIELAB differences between pairs of swatches computed as:

$$\Delta E_{ab}^* = \sqrt{(L_s^* - L_f^*)^2 + (a_s^* - a_f^*)^2 + (b_s^* - b_f^*)^2},$$

where:

 L^* , a^* and b^* are CIELAB color space dimensions, and the subscripts s and f represent the sparse and full spectral resolutions, respectively.

Perceptibility threshold: $\Delta E_{ab}^* < 2.3$

(Source: Mahy et al., 1994)

Results and Discussion

• Swatches depicting foliar reflective behaviour

• Swatches depicting foliar reflective behaviour

 $\overline{N=301} \qquad N=3 \qquad N=5 \qquad N=6 \qquad N=7 \qquad N=8$

• CIELAB differences

	Reflective Behaviour						
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8		
А	46.7559	11.2375	6.4528	0.846 1	0.8020		
D65	36.1066	19.7921	5.5571	2.0533	1.3456		

Using 7 samples, the differences are below the perceptibility threshold (2.3)

• CIELAB differences

	Reflective Behaviour						
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8		
А	46.7559	11.2375	6.4528	0.846 1	0.8020		
D65	36.1066	19.7921	5.5571	2.0533	1.3456		

- Using 7 samples, the differences are below the perceptibility threshold (2.3)
- Using 8 samples, they become markedly below the threshold

• CIELAB differences

	Aggregated Reflective and Transmissive Behaviour							
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8			
А	45.8230	17.1292	10.3191	1.9361	1.1052			
D65	46.1237	25.3037	9.8280	1.7179	0.8424			

Using 7 samples, the differences are below the threshold (2.3)

• CIELAB differences

	Aggregated Reflective and Transmissive Behaviour							
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8			
А	45.8230	17.1292	10.3191	1.9361	1.1052			
D65	46.1237	25.3037	9.8280	1.7179	0.8424			

- Using 7 samples, the differences are below the threshold (2.3)
- Using 8 samples, they become markedly below the threshold

Swatches depicting reflective behaviour

Swatches depicting reflective behaviour

 $N = 301 \qquad N = 3 \qquad N = 5 \qquad N = 6 \qquad N = 7 \qquad N = 8$

Swatches depicting reflective behaviour

 $N = 301 \qquad N = 3 \qquad N = 5 \qquad N = 6 \qquad N = 7 \qquad N = 8$

Swatches depicting reflective behaviour

 $\overline{N=301} \qquad \overline{N=3} \qquad \overline{N=5} \qquad \overline{N=6} \qquad \overline{N=7} \qquad \overline{N=8}$

• CIELAB differences

		Reflective Behaviour						
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8			
А	40.4986	9.7705	5.3314	0.6346	0.8277			
D65	31.1737	18.0523	4.6922	2.7911	0.7095			

Using 7 samples, not both differences are below the threshold (2.3)

CIELAB differences

		Reflective Behaviour						
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8			
А	40.4986	9.7705	5.3314	0.6346	0.8277			
D65	31.1737	18.0523	4.6922	2.7911	0.7095			

- Using 7 samples, not both differences are below the threshold (2.3)
- Using 8 samples, both differences become markedly below the threshold

• CIELAB differences

	Aggregat	Aggregated Reflective and Transmissive Behaviour							
Illuminant	N = 3	N = 5	N = 6	N = 7	N = 8				
А	53.5902	17.3101	9.9848	2.4778	0.7864				
D65	43.4365	24.4057	9.9055	1.4961	0.6757				

Using 7 samples, not both differences are below the threshold (2.3)

• CIELAB differences

	Aggregat	Aggregated Reflective and Transmissive Behaviour							
Illuminant	N = 3	N = 5	N = 6	N=7	N=8				
A	53.5902	17.3101	9.9848	2.4778	0.7864				
D65	43.4365	24.4057	9.9055	1.4961	0.6757				

- Using 7 samples, not both differences are below the threshold (2.3)
- Using 8 samples, both differences become markedly below the threshold

Practical ramifications

- Our preliminary findings suggest that 8 spectral samples may be sufficient to obtain a high-fidelity reproduction of the colors of healthy maize leaves
- It may be unfeasible to find the exact number of samples that would work for:
 - all the different sampling schemes and distinct illumination/viewing geometries that could be employed in the monitoring of these plants
 - the relatively broad range of maize specimens' spectral signatures
- Nonetheless, our preliminary findings provide a basis for future experiments involving maize and other C4 species (*e.g.*, sugarcane)

- Different approaches can be employed to monitor maize crops:
 - involving the calculation of spectral vegetation indices
 - involving the analysis of foliar chromatic attributes

- None can be considered the "magic bullet" capable of providing the "best" feedback for all instances
- All rely, directly or indirectly, on the interpretation of spectral signatures
- Hence, the need for more cost-effective strategies to sample those signatures

- > Outlook
 - The development of new technologies in this area will likely involve the implementation and combination of different methods

 It may be benefitial to design sensors to acquire a (low) number of spectral samples that can also be used in the creation of compact & high-fidelity leaf color databases

• These databases could potentially be extended to other C4 species (*e.g.*, sugarcane) with similar chracteristics

Thank you!

Questions?