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ABSTRACT

Maize (Zea mays L., corn) crops are extensively used in food and biofuel production worldwide. A number
of protocols have been proposed to use leaf color as an indicator of the health status of maize plants. Color
perception is a complex process, however. The correct interpretation of its outcomes depends on several aspects.
Accordingly, a variety of spectral vegetation indices have also been proposed to monitor the development of these
plants. These indices usually require a number of spectral reflectance and transmittance samples taken from
selected specimens using specialized sensors. Since these radiometric quantities do not depend neither on the
spectra of the light sources nor on the physiological characteristics of the human visual system, these indices are
not subject to color perception issues. The visual feedback provided by the chromatic attributes of plant leaves,
on the other hand, can enable a broader assessment of the net effect of several environmental factors affecting an
entire maize crop. Also, these attributes can be obtained using spectral reflectance and transmittance samples
already employed in the computation of the aforementioned indices. These aspects indicate the potential benefits
of the combined use of vegetation indices and leaf chromatic attributes in the monitoring of maize crops. Ideally,
one would like to employ a number of spectral samples that would maximize the color fidelity to sensor costs
ratio. In this paper, we address this practical trade-off. More specifically, using hyperspectral reflectance and
transmittance data for maize specimens, we performed colorimetric experiments to obtain a lower bound for the
number of spectral reflectance and transmittance samples sufficient to achieve a high degree of fidelity in the
reproduction of maize leaves’ colors under distinct illumination conditions.

Keywords: leaf, maize, corn, reflectance, transmittance, color perception, precision agriculture, remote sensing.

1. INTRODUCTION

Maize (Zea mays L., corn) plants are among the most important cultivated species on the planet. To obtain an
ecologically sustainable increase in the yield of maize crops, its essential to monitor the health status of these
plants in a timely and reliable fashion. Since the chromatic attributes of a leaf depend on the morphological
characteristics and optical properties of its tissues, it can provide useful visual cues about biophysical phenomena
that may have an impact on the plant’s physiology. Not surprisingly, in the last years, a number of protocols
have been proposed to use the maize leaves’ chromatic attributes as indicators of such phenomena affecting their
appearance.1–6

A material’s perceived color depends on its spectral signatures (reflectance and transmittance), the spectral
power distribution of the illuminant (light source) and the responses of the observer’s photoreceptors.7 The
intrinsic complexity of this process can make the correct interpretation of a material’s chromatic attributes a
challenging task. For instance, two illuminants with distinct spectral power distributions may produce the same
perception of colour, a phenomenon known as illuminant metamerism, or the same illuminant may produce
different color perceptions for different observers, a phenomenon known as observer metamerism.8,9

Alternatively, a variety of spectral vegetation indices have also been proposed to monitor plant develop-
ment.10,11 These indices usually require a number of spectral samples of a target specimen’s reflectance and
transmittance signatures. Since these signatures do not depend neither on illuminants’ emission spectra nor on
human photoreceptors’ responses, the subsequent analysis of these indices is not hindered by color perception
issues.
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It is worth noting that vegetation indices are usually designed to be used in the detection and monitoring of
specific factors affecting a plant’s health status. The visual inspection of leaf chromatic attributes, on the other
hand, can provide a broader, albeit not necessarily complete, qualitative assessment of the net effect of several
of these factors that may be concomitantly affecting a plant physiology. Also, leaf chromatic attributes can
be obtained using spectral samples already employed in the computation of vegetation indices. These aspects
provide an indication of the potential benefits that could result from the combined use of vegetation indices and
leaf chromatic attributes in the cost-effective monitoring of maize crops’ development.

There are practical issues related to this strategy that need to be considered, however. First, the monitoring
of effects elicited by different environmental factors may require the use of several vegetation indices, with each
index employing as few spectral samples as possible to mitigate sensor costs. Second, to reproduce the color of
a target leaf specimen with a high level of fidelity,12 it may be necessary to use a certain number of spectral
samples. Ideally, one would like to employ a number of samples that would maximize the color fidelity to sensor
costs ratio.

Assuming that one does not have prior information about the specimens’ health status, it would be appro-
priate to employ an unsupervised spectral sampling strategy13 in the calculation of vegetation indices and the
reproduction of leaf chromatic attributes. In other words, the spectral samples would be obtained at regular
intervals within the visible spectral domain. This leads to the question of how many spectral samples would
likely be sufficient to achieve a high degree of fidelity in the reproduction of leaf chromatic attributes, particularly
considering small angles of light incidence, which is often the case in related remote sensing and low-proximity
imaging applications.

In this work, we address this question. More specifically, using spectral measured reflectance and transmit-
tance data for maize specimens and well-established colorimetry procedures, we carried out computations to
estimate a lower bound for the number of spectral samples that might be sufficient to achieve a high degree
of fidelity in the reproduction of maize leaves’ chromatic attributes. To increase the scope of our observations,
we considered different standard illuminants, normally associated with indoor and outdoor scenarios, as well as
distinct regimes of light propagation by selected maize specimens. Although there are several models of light and
plant interactions14,15 that can enable us to obtain maize reflectance and transmittance data for a wide range
of in silico experimental conditions (e.g., different angles of incidence), we opted to use actual measured plant
spectral data16 so that we can provide a model-independent baseline for future investigations in this area.

2. METHODOLOGY

The measured spectral data employed in our investigation was made available in the LOPEX database.16 The
LOPEX project involved experiments performed on 120 leaf specimens representative of more than 50 species,
with the specimens collected during periods of high phenological activity. These experiments included directional-
hemispherical reflectance and transmittance measurements carried out considering an angle of incidence of 8◦

(with respect to the specimens’ normal vector). The resulting LOPEX spectral data files employed in our
investigation were obtained from two distinct maize specimens, henceforth referred to M1 and M2. More precisely,
the directional-hemispherical reflectance and transmittance for specimen M1 correspond to LOPEX spectral files
141 and 142, respectively, while the directional-hemispherical reflectance and transmittance for specimen M2
correspond to LOPEX spectral files 537 and 538, respectively.

For certain applications, color images or hyperspectral signatures of maize leaves are obtained taking into
account only their reflective behaviour, i.e., with one of the leaf’s (blade) surfaces placed over an opaque material
to block light transmission.11,17 In others, this procedure is not performed and the obtained images correspond
to the sampling of the light reflected and transmitted by the leaves. We have considered both image capture
set-ups. Moreover, the images can be obtained indoors (e.g., in a greenhouse3,5) or outdoors (e.g., in a crop
field4,6). To account for that, we considered a standard CIE A illuminant (gas-filled tungsten lamp operating
at a color correlated temperature of 2856 K)7,8 for the former case, and a standard D65 illuminant (average
daylight with correlated color temperature of 6504 K) for the latter.7,8

It has been demonstrated that the corn leaves’ reflectance follows a near-Lambertian behaviour, notably for
small angles of light incidence.18 As pointed out by Nicodemus et al..,19 for materials characterized by a pre-
dominantly diffuse (Lambertian) behaviour, directional-hemispherical reflectance and hemispherical-directional
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reflectance factor quantities are equal for a given direction.19 We took this equivalence into account in this work
and assumed that directional-hemispherical and hemispherical-directional reflectance quantities can be used in-
terchangeably in the visualization of leaf chromatic attributes. Similarly, considering that unifacial corn leaves
are characterized by a structural symmetry20 and their transmittance follows a near-Lambertian behaviour18 as
well, we also extended this rationale to the selected specimens’ transmittance.

We then used the specimens’ measured reflectance curves to generate the chromatic attributes associated
with their light reflective behaviour. More precisely, these attributes were computed through the convolution
of the selected illuminants’ spectral power distributions, the measured reflectance data and the broad spectral
responses of the human photoreceptors.7 This last step was performed by using a standard CIEXYZ to sRGB
color system conversion procedure21 and considering the standard CIE A and D65 illuminants. Subsequently,
the resulting colors were used to render leaf swatches through the application of a grayscale texture. The
same procedure was used to generate the specimens’ chromatic attributes associated with the aggregated com-
bination of their reflective and transmissive behaviour. The components of this procedure are presented in Fig. 1.
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Figure 1: Components of the convolution procedure employed to generate the colors and swatches for the selected
maize specimens. (a) Measured reflectance curves for specimens M1 and M2 (LOPEX spectral files 0141 and
0537,16 respectively). (b) Measured transmittance curves for specimens M1 and M2 (LOPEX spectral files 0142
and 0538,16 respectively). (c) Relative spectral power distributions associated with the CIE standard A (tungsten
lamp) and D65 (daylight) illuminants.7 (d) Grayscale texture map (obtained from a photo of a maize leaf).

In short, our investigation involved a total of eight test cases: two specimens (M1 and M2), two light propa-
gation behaviours (reflection only and aggregated reflection and transmission) and two illuminants (A and D65).
For each test case, we computed the chromatic attributes associated with six distinct spectral sampling reso-
lutions (Table 1) applied to the specimens reflectance and transmittance curves as well as to the illuminants’
spectral power distributions. More explicitly, we considered six distinct values for the number of sampled wave-
lengths, denoted by N , used in the convolution procedure outline above. The lowest value (N = 3) corresponds
to a standard nonuniform spectral sampling, and it was included for comparison purposes. It is associated with
SMPTE (Society of Motion Picture and Television Engineers) monitor chromaticity coordinates often employed
in the conversion of CIE XYZ values to the RGB color space.14,22 The intermediate values (N = 5, 6, 7 and
8) correspond to uniform (evenly-spaced) spectral sampling resolutions. Lastly, the largest value (N = 301)
corresponds to the curves’ full spectral resolution, and it was employed as a reference for fidelity assessments.

N Spectral Intervals Sampled Wavelengths

3 variable 465, 551 and 608 nm (monitor chromaticities)
5 75 nm 400, 475, 550, 625 and 700 nm
6 60 nm 400, 460, 520, 580, 640 and 700 nm
7 50 nm 400, 450, 500, 550, 600, 650 and 700 nm
8 37 nm 400, 437, 474, 511, 548, 585, 622, 659 and 696 nm

301 1 nm all from 400 to 700 nm (full spectral resolution)

Table 1: Spectral resolutions (represented by the number (N) of sampled wavelengths) employed in our
investigation.
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Besides the visual inspection of the leaf swatches, we also employed a device-independent CIE-based metric
to compare the obtained chromatic attributes. More specifically, we calculated the CIELAB differences between
the colors (before their achromatic relative brightness modulation by the grayscale texture) associated with
chosen spectral sampling resolutions (N = 3, 5, 6, 7 and 8) and the colors obtained considering the full spectral
resolution (N = 301). These calculations were performed using the following formula:23

∆E∗
ab =

√
(dL

2 + da
2 + db

2), (1)

where dL, da and db represent the differences L∗
s − L∗

f , a∗s − a∗f and b∗s − b∗f , respectively, in which L∗, a∗ and
b∗ correspond the CIELAB color space dimensions. These are calculated employing the chromatic attributes
(colors) obtained considering the tested sparse spectral resolutions (indicated by the subscript s) and those
attributes obtained considering the full spectral resolution (indicated by the subscript f). Again, we performed
these calculations using standard formulas commonly employed in colorimetric studies24 and considering the CIE
A and D65 illuminants.7

3. RESULTS AND DISCUSSION

In Fig. 2, we present the swatches obtained considering the reflective behaviour of specimen M1. One can observe
that the swatches generated using only 3 spectral samples fail to correctly reproduce the specimen’s chromatic
attributes obtained considering the full spectral resolution. Furthermore, as the number of samples is increased,
the colors depicted in the swatches tend to match the colors of the reference swatches (generated using the
full spectral resolution). Although the use of two different illuminants, A and D65, may alter the swatches’
perceived colors, it does not affect the previously mentioned qualitative trends. These trends are also observed
in the swatches presented in Fig. 3, which were obtained considering the aggregated reflective and transmissive
behaviours of specimen M1. Since in this case more light is propagated through the specimen, the swatches
appear brighter than those presented in Fig. 2.

In order to quantify the color variations observed in the swatches presented in Figs. 2 and 3, we computed
the corresponding CIELAB ∆E∗

ab differences with respect to the reference swatches. The resulting values are
provided in Table 2. It has been experimentally determined that the perceptibility threshold for CIELAB
differences is 2.3,23,25,26 i.e., chromatic variations associated with ∆E∗

ab below 2.3 are not considered discernible
by human observers in general.26 As it can be observed in Table 2, the ∆E∗

ab differences computed for the
chromatic attributes obtained considering 7 evenly spaced samples are below the perceptibility threshold, albeit
one may still be able to note some chromatic mismatches. By increasing the number of samples to 8, the resulting
∆E∗

ab differences become markedly below 2.3 and, for practical purposes, the colors become indistinguishable
from those obtained considering the full spectral resolution.

When we repeated the procedures for the specimen M2, we observed the same qualitative trends reported for
specimen M1. This can be verified in the swatches presented in Figs. 4 and 5. However, when we computed the
corresponding CIELAB ∆E∗

ab differences, which are provided in Table 3, we noticed that, for some instances, 7
samples were no longer sufficient to obtain values below the 2.3 perceptibility threshold. Still, when we employed
8 evenly space samples, the resulting ∆E∗

ab differences become markedly below 2.3, and, again, the colors become
indistinguishable from those obtained considering the full spectral resolution. This suggests that 8 samples may
be considered a lower bound for the number of evenly spaced reflectance and transmittance values required to
obtain a high-fidelity reproduction of the colors of healthy maize leaves.

Clearly, one can use different sampling schemes to obtain reflectance and transmittance values in the visible
domain. Moreover, there is also a number of different illuminants and viewing/illumination geometries that can
be employed to monitor the plants’ development. Last, but not least, one should keep in mind the consider-
able variability among the characteristics and spectral signatures of maize specimens, and the fact that such a
variability tends to increase as the plants’ health status changes. Therefore, it may not be practical to obtain
an exact lower bound for the number of spectral reflectance and transmittance samples. We remark, however,
that the purpose of our investigation was to provide a basis for future experiments in this area. These could
also involve other other C4 species, like surgarcane (Saccharum officinarum) plants, which not only share similar
characteristics with maize plants (e.g., unifacial leaves), but also have a similar importance for the food and
biofuel production industries.27
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Figure 2: Swatches obtained considering the reflective behaviour of specimen M1, the relative spectral power
distributions of the CIE standard A (top row) and D65 (bottom row) illuminants, and distinct spectral sampling
resolutions. From left to right, 301 (full resolution), 3, 5, 6, 7 and 8 samples as indicated in Table 1.

Figure 3: Swatches obtained considering the aggregated reflective and transmissive behaviour of specimen M1,
the relative spectral power distributions of the CIE standard A (top row) and D65 (bottom row) illuminants,
and distinct spectral sampling resolutions. From left to right, 301 (full resolution), 3, 5, 6, 7 and 8 samples as
indicated in Table 1.

Reflective Behaviour Aggregated Reflective and Transmissive Behaviour

Illuminant N = 3 N = 5 N = 6 N = 7 N = 8 N = 3 N = 5 N = 6 N = 7 N = 8

A 46.7559 11.2375 6.4528 0.8461 0.8020 45.8230 17.1292 10.3191 1.9361 1.1052
D65 36.1066 19.7921 5.5571 2.0533 1.3456 46.1237 25.3037 9.8280 1.7179 0.8424

Table 2: CIELAB ∆E∗
ab differences computed for the M1 specimen’s chromatic attributes obtained considering

each tested sparse spectral resolution (N), the specimen’s reflective behaviour (as depicted in the swatches
presented in Fig. 2) and the specimen’s aggregated reflective and transmissive behaviour (as depicted in the
swatches presented in Fig 3). Values below the perceptibility threshold (2.3) for CIELAB chromatic differences
are presented in boldface.
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Figure 4: Swatches obtained considering the reflective behaviour of specimen M2, the relative spectral power
distributions of the CIE standard A (top row) and D65 (bottom row) illuminants, and distinct spectral sampling
resolutions. From left to right, 301 (full resolution), 3, 5, 6, 7 and 8 samples as indicated in Table 1.

Figure 5: Swatches obtained considering the aggregated reflective and transmissive behaviour of specimen M2,
the relative spectral power distributions of the CIE standard A (top row) and D65 (bottom row) illuminants,
and distinct spectral sampling resolutions. From left to right, 301 (full resolution), 3, 5, 6, 7 and 8 samples as
indicated in Table 1.

Reflective Behaviour Reflective and Transmissive Behaviour

Illuminant N = 3 N = 5 N = 6 N = 7 N = 8 N = 3 N = 5 N = 6 N = 7 N = 8

A 40.4986 9.7705 5.3314 0.6346 0.8277 53.5902 17.3101 9.9848 2.4778 0.7864
D65 31.1737 18.0523 4.6922 2.7911 0.7095 43.4365 24.4057 9.9055 1.4961 0.6757

Table 3: CIELAB ∆E∗
ab differences computed for the M2 specimen’s chromatic attributes obtained considering

each tested sparse spectral resolution (N), the specimen’s reflective behaviour (as depicted in the swatches
presented in Fig. 4) and the specimen’s aggregated reflective and transmissive behaviour (as depicted in the
swatches presented in Fig 5). Values below the perceptibility threshold (2.3) for CIELAB chromatic differences
are presented in boldface.
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4. CONCLUSION

Different approaches can be employed to monitor maize crops. No particular approach, either based on the
calculation of vegetation indices or the analysis of foliar chromatic attributes, may be considered the “magic
bullet” capable of providing the “best” feedback for all instances. The development of new technologies in this
area will likely involve the implementation and possible combination of different methods, with the selection
of a method for a particular application being based on the variables under scrutiny. Moreover, since most
of the existing methods rely, directly or indirectly, on the interpretation of target specimens’ reflectance and
transmittance signatures, it is only logical to search for cost-effective strategies for the sampling of this spectral
information. This aspect has motivated the investigation presented in this paper. Such a search, however, can
be viewed as a long term task since it involves several experimental dimensions. Nonetheless, the preliminary
observations presented here suggest that it may be feasible to design multispectral sensors to measure reflectance
and transmittance values at a relatively low number of wavelengths, and use this data to obtain high-fidelity
reproductions of foliar chromatic attributes. This combined use of different monitoring methods could, in turn,
potentially lead to more effective assessments of maize plants and other C4 species.
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