In Silico Assessment of Tanning Masking Effects on Skin Chromatic Attributes Elicited by Anemia and Hyperbilirubinemia

> Gladimir V. G. Baranoski and Petri M.Varsa Natural Phenomena Simulation Group University of Waterloo, Canada

IEEE EMBC'22 Glasgow, Scotland, July 11-15, 2022

□ Introduction

Investigation Framework

□ Results and Discussion

□ Conclusion

Introduction

Motivation

- Anemia and hyperbilirubinemia are pervasive medical conditions that affect the health of individuals of all ages, genders and ethinicities worldwide
- Skin appearance changes are among their most recognizable symptoms
- The correct assessment of these changes plays a pivotal role in the early detection and positive outcome of these conditions
- Investigations on how tanning-elicited variations in skin chromatic attributes can mask these symptoms have not as yet been reported in the literature

Absorption Spectra of Pigments found in the Cutaneous Tissues

Absorption Spectra of Pigments found in the Cutaneous Tissues

eumelanin oxyhemoglobin pheomelanin deoxyhemoalobin (lm/bm) (cm⁻¹/(mole/L)) E 21 0└─ 400 wavelength (nm) wavelength (nm) 7×10^4 -bilirubin - bilirubin 80 • [cm⁻¹/(mol/L)] ε [cm⁻¹/(mol/L)] wavelength (nm) wavelength (nm)

Absorption Spectra of Pigments found in the Cutaneous Tissues

Anemia → reduced red blood cell count

lower hemoglobin contents \rightarrow paleness

Absorption Spectra of Pigments found in the Cutaneous Tissues

Hyperbilirubinemia → excessive bilirubin presence

yellow-tinted appearance (janudice)

Challenges

- Intrinsic limitations of traditional "wet" laboratory procedures
 - simultaneous reduction in hemoglobin concentration and increase in bilirubin concentration may be problematic to be achieved/controlled
 - synchronization of those variations with a tanning process may be even more difficult to be achieved/controlled
- Possible risks to a subject's health, which can be further exacerbated by overexposure to ultraviolet radiation triggering a tanning process

> Objectives

- Systematically assess the masking effects of tanning on skin chromatic changes caused by anemia and hyperbilirubiemia, occurring separately or simultaneously
- Contribute to the mitigation of the knowledge gap in this area

> Approach

 Controlled <u>in silico</u> experiments conducted using a first-principles hyperspectral model of light interactions with human skin: HyLloS (Chen & Baranoski, 2015)

http://www.npsg.uwaterloo.ca/resources/videos/hylios.mp4

Investigation Framework

- We considered the untanned (baseline) and tanned states of a lightly-pigmented specimen with a moderate tanning ability
 - for the tanning data, we sampled the variables at their peak (day 30)

http://www.npsg.uwaterloo.ca/resources/videos/tanning.mp4

 To characterize distinct <u>anemia severity levels</u>, we employed dermal <u>hemoglobin concentration</u> values reported in the literature

Level	Severity	Hemoglobin Concentration (g/L)			
A0	baseline	147.0			
A1	mild	117.6			
A2	moderate	88.2			
A3	severe	58.8			

 Similarly, to characterize distinct <u>hyperbilirubinemia toxicity stages</u>, we employed cutaneous <u>bilirubin concentration</u> values also reported in the literature

Stage	Toxicity	Bilirubin Concentration (g/L)
HO	baseline	0.003
H1	significant	0.071
H2	excessive	0.161
H3	extreme	0.233

Methodology

- We computed directional-hemispherical reflectance curves for the specimens using HyLloS and considering an angle of incidence of 15 degrees
- We generated skin swatches through the convolution involving:
 - the CIE D50 illuminant's spectral power distribution
 - the modeled reflectance data
 - the human photoreceptors' spectral responses

• To enable the reproduction of our *in silico* experimental results, we provide the employed biophysical data and made HyLloS available for online use

Natural Phenomena Simulation Group University of Waterloo

Home

Members Research

<u>Data</u>

<u>ita</u>

Models Guid

<u>Guides</u>

Gallery

3

degrees 🕜

nm 🕜

Misc.

Contact

HyLloS

News

Hyperspectral Light Impingement on Skin

(Extended Spectrometric Mode^{*})

The HyLloS model uses a Monte Carlo formulation to simulate light interaction with human skin. Melanosomes are created and discarded on the fly as the light propagates through the skin tissue. The light rays can be scattered or absorbed by these organelles as well as other skin constituents. For more details about this model, please read our related publication (<u>2015</u>).

Note that HyLloS provides bidirectional readings. However, one can obtain directional-hemispherical quantities (provided by our online system) by integrating the outgoing light (rays) with respect to the collection hemisphere. Similarly, bihemispherical quantities can be calculated by integrating the BSDF (Bidirectional Scattering Distribution Function) values with respect to incident and collection hemispheres.

Run HyLloS Online

Enter your email address:	
(used to send the results)	

Model Parameter

Value

Number of samples	100000
Angle of incidence	8
Wavelength range	400-700
Output Reflectance Data	
Output UV Absorptance Data	□ 🕜

Morphological Parameters

Aspect ratio of skin surface folds	0.1	0
Stratum corneum thickness	0.0004	cm
Stratum granulosum thickness	0.0033	cm

http://www.npsg.uwaterloo.ca/models/hyliosEx.php

We also computed CIELAB differences between pairs of swatches

$$\Delta E_{ab}^* = \sqrt{(L_1^* - L_2^*)^2 + (a_1^* - a_2^*)^2 + (b_1^* - b_2^*)^2},$$

where:

 L^* , a^* and b^* correspond to the CIE color space dimensions, and the subscripts 1 and 2 represent the compared swatches.

> Perceptibility threshold: $\Delta E_{ab}^* < 2.3$ (Source: Mahy et al., 1994)

Results and Discussion

Reflectance curves

Specimen in its **Untanned** State

• For a normal bilirubin level (H0), the increase in anemia severity is accompanied by an overall reflectance increase, notably between 500-600 nm

Reflectance curves

Specimen in its <u>Untanned</u> State

- For a normal bilirubin level (H0), the increase in anemia severity is accompanied by an overall reflectance increase, notably between 500-600 nm
- Increase in hyperbilirubinema toxicity makes the reflectance increase negligible between 400-475 nm, and bilirubin-related dips in the 620-700 nm noticeable

Specimen in its <u>Tanned</u> State

- Reflectance curves are lower than those obtained by the untanned specimen
- Reflectance curves for distinct anemia severities are closer to each other

- Reflectance curves are lower than those obtained by the untanned specimen
- Reflectance curves for distinct anemia severities are closer to each other
- Bilirubin-related reflectance dips in the 620-700 nm region are less noticeable

Skin swatches

Untanned State

Tanned State

Skin swatches

Untanned State

Tanned State

Untanned State

Tanned State

Row-wise CIELAB differences (for anemia transitions)

Hyperbilirubinemia	Anemia Severity Transitions			
Toxicity Stages	A0 & A1 A1 & A2		A2 & A3	
H0	1.4941	2.4602	2.9653	
H1	1.8897	3.4710	3.1428	
H2	1.8841	2.8347	4.0730	
H3	1.8811	2.8282	4.0646	

Specimen in its <u>Untanned</u> State

Specimen in its Tanned State

Hyperbilirubinemia	Anemia Severity Transitions			
Toxicity Stages	A0 & A1	A1 & A2	A2 & A3	
H0	1.2739	1.1314	1.7449	
H1	1.1385	2.1030	1.7358	
H2	1.1694	2.1032	2.2464	
H3	1.5921	1.1242	2.6211	

> 2.3

Column-wise CIELAB differences (for hyperbilirubinemia transitions)

Specimen in its Untanned State

Hyperbilirubinemia	Anemia Severity Levels				
Toxicity Transitions	A0	A1	A2	A3	
H0 & H1	9.2849	10.2381	12.6477	14.2340	
H1 & H2	2.4813	2.4693	2.3954	2.8839	> 4
H2 & H3	1.2427	1.2364	1.2275	1.2141	

Specimen in its Tanned State

Hyperbilirubinemia	Anemia Severity Levels			
Toxicity Transitions	A0	A1	A2	A3
H0 & H1	7.8167	8.5305	9.9711	11.1466
H1 & H2	2.5341	2.7732	2.5116	2.8683
H2 & H3	1.0098	1.5076	0.8269	1.2464

> 2.3

Biomedical ramifications

- Low cost approaches for the detection and treatment of anemia and hyperbilirubinemia rely on the correct assessment of their visual symptoms
- It is necessary to take into account possible changes in a patient's physiological status during the monitoring of these medical conditions over a period of time
- During tanning, a number of physiological changes take place

- Tanning-elicited masking effects can affect the perception of paleness and yellowness following the onset of anemia and hyperbilirubinemia, respectively
 - the degree of difficulty in the differentiation of skin color variations tends to be higher for anemia than for hyperbilirubinemia
 - in the case of hyperbilirubinemia, these effects are more likely to become a hindrance when transitions to extreme stages of this disorder are involved

Status quo

- Our findings, albeit still subject to *in vivo* confirmation, provided insights about:
 - the interations between anemia and hyperbilirubinemia's visual symptoms
 - how they can be affected by tanning-induced processes

- The precise magnitude of tanning masking effects varies from one invidual to another, and its quantification under *in vivo* conditions would incur health risks
- Alternatively, comprehensive databases, containing spectral responses, images and the specimens' characterization information could be compiled *in silico*

Outlook

- The compilation of such *in silico* databases, however, would not diminish the value of measured skin spectral datasets obtained from live skin specimens
- These measured datasets are essential for the proper evaluation of computer models to be used to obtain comprehensive *in silico* databases

• Moreover, many devices used in the screening, monitoring and treatment of diseases employ models in the interpretation of skin spectral responses

- The efficacy of these medical applications depends on the proper evaluation of these models' predictive capabilities through comparisons with measured data
- Hence, we believe that the biomedical community should promote and provide effective support to iniatives aiming at increasing the availability of such data

