
Chapter 3

Measurement Procedures

The group of measurements necessary to characterize both the color and
surface finish of an object is called the measurement of appearance of an
object [102]. This group of measurements involves the spectral energy
distribution of propagated light, measured in terms of reflectance and
transmittance, and the spatial energy distribution of that light, measured
in terms of BRDF and BTDF.

The variations in the spectral distribution of the propagated light affect
appearance characteristics such as hue, lightness and saturation [102]. Hue
is the attribute of color perception by means which an object is judged to
be red, yellow, green, blue, purple and so forth. Lightness is the attribute
by which white objects are distinguished from gray objects and light from
dark colored objects. Finally, saturation is the attribute that expresses
the degree of departure from the gray of the same lightness.

The changes in the spatial distribution of the propagated light affect
appearance characteristics such as gloss, reflection haze, transmission
haze, luster and translucency. The reflection haze corresponds to the
scattering of reflected light in directions near that of specular reflection
by a specimen having a glossy surface [102]. The transmission haze
corresponds to the scattering of light within or at the surface of a
nearly clear specimen, which is responsible for cloudy appearance seen
by transmission [102]. Finally, the luster, or contrast gloss, as described
by Hunter and Harold [102], corresponds to the gloss associated with
contrasts of bright and less bright adjacent areas of the surface of an
object. Luster increases with increased ratio between light reflected in the
specular direction and that reflected in those diffuse directions which are
adjacent to the specular direction.
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Greenberg et al. [86] proposed a framework to test, validate and
improve the fidelity and efficiency of computer graphics algorithms, which
is composed of three stages, namely local light scattering models, light
transport simulations and image display procedures. They emphasized
the importance of performing comparisons between simulations and actual
measurements so that simulations can be used in a predictive manner.
According to their paradigm, it is of fundamental importance that
at each stage simulations are compared with measured experiments.
Actual measurements of reflectance and transmittance are performed using
spectrophotometers, and actual measurements of BRDF and BTDF are
performed using goniophotometers [102, 110]. These devices are important
basic tools for fundamental research in colorimetry [135], solar engineering
[61], remote sensing [52, 108] and plant biochemistry [27, 108]. In this
chapter we discuss the computer simulations of such devices, henceforth
called virtual measurement devices. The use of these virtual devices
enables us to measure the spectral data generated from computer models
and allows us to perform experiments at different sampling resolutions,
which are essential requirements for rendering applications as pointed out
by Lalonde and Fournier [126].

Two applications of virtual measurements are especially relevant
for biologically and physically-based rendering. The first application
corresponds to virtual measurements aimed at the testing and evaluation
of reflectance and BDF models through comparisons with actual
measurements. Obviously, these models can be verified by comparing
their readings with actual measurements performed on real materials.
However, in order to obtain the readings from the computer models in
the first place, one must perform a computer simulation of the inputs
and outputs of the model, i.e., considering light incident from a given
direction and at a given wavelength, one must measure the spectral
and spatial distributions of that light after being processed by the
model. These measurements are performed using a virtual device, or a
computer simulation of a real measurement device, whose formulation
should reproduce actual measurement conditions as faithfully as possible
to minimize the introduction of bias in the comparisons.

It may be argued that wildly different computer models can provide
the same reflectance for a given illuminating, or incidence, geometry.
However, for practical purposes the evaluation of a computer model will
take into account how close, quantitatively and qualitatively, the overall
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curves provided by this model are from the actual curves for different
measurement instances. For example, suppose that the spectral curves
provided by a reflectance model A have an average discrepancy of 5%
with respect to the actual curves, and the curves provided by a model B
have an average discrepancy of 30%. Which one should be incorporated
into a rendering framework?

The second application corresponds to data generation from previously
validated computer models. This may involve a large number of
measurements with respect to different wavelengths and illuminating
geometries. Such data can sometimes be found in the literature where
actual measurements from real materials are reported. However, more
often it is not available, and even when it is available, it is only for
a restricted number of measurement configurations. For example, the
most comprehensive set of experiments involving leaf optical properties
performed to date [101] was limited to a single angle of incidence, 8◦.

Virtual measurement devices are usually described in connection with
a scattering model when they are discussed in the computer graphics
literature. For example, Gondek et al. [80] have used a device for spectral
and spatial measurements, a virtual goniospectrophotometer, presented as
an optics model and a capture dome used in conjunction with a geometric
model of surface microstructure. In this chapter the formulation of virtual
measurement devices is described independently of the reflectance and
scattering models.

3.1 Virtual Spectrophotometry

There are many scattering models in the computer graphics literature
classified as reflectance and transmittance models. This classification is
in many cases not entirely accurate since they only compute the BRDF
and BTDF using reflectance and transmittance values, which correspond
to input data, as scaling factors or “weights”, for the spatial distribution
of the scattered light. For example, the models described in Chapter 6
and Chapter 8 can be used to render a plant leaf under different lighting
conditions, provided foliar reflectances and transmittances for different
wavelengths and illuminating geometries are available as data for the
model.

The data for these models [93], is, in general, not available. This
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highlights two important issues related to biologically and physically-based
rendering. First, it shows the need for developing models to compute
reflectances and transmittances, specially for organic materials. Second,
it shows the need for developing accurate and efficient measurement
procedures, as pointed out during the Workshop on Metrology and
Modeling of Color and Appearance1.

3.1.1 Characteristics of Actual Spectrophotometers

A spectrophotometer is defined to be any instrument for measuring
the spectral distribution of reflected and transmitted radiant power,
and spectrophotometry is defined as the quantitative measurement
of reflection and transmission properties as a function of wavelength
[59]. Spectrophotometers can also be used to determine the absorption
characteristics of an object as a function of wavelength. For applications
involving organic materials (e.g., precision farming and plant physiology
studies), however, the measurement of absorption profiles is often
performed directly with fiber optics microprobes [108].

Actual reflectance measurements are usually performed under
illuminating and viewing conditions recommended by CIE2: 45◦/0◦,
0◦/45◦, diff/0◦ and 0◦/diff (Figure 3.1), where diff stands for diffuse.
The first three conditions give reflectance (radiance) factor readings, and
the last one gives reflectance readings. We note, however, that the
numerical values of reflectance and reflectance factor are identical under
the conditions of hemispherical collection.

Integrating spheres are used to provide readings where either the
illuminant or viewing specification is “total” or “diffuse only”. A gloss
trap may be incorporated in the design of the integrating sphere to
reduce the influence of the specular component of specimens with mixed
reflection behavior. According to CIE, in the 45◦/0◦ and 0◦/diff conditions,
specimens with such behavior should not be measured with strictly normal
illumination in order to reduce the possibility of introducing systematic
errors, which may be caused by interreflections between the specimen and
the emitter device. CIE recommends, however, that the angle between the
direction of viewing and the normal to the specimen should not exceed
10◦, and the angle between the axis and any ray of an illuminating beam

1http://slp.nist.gov/appearance/workshop.html
2Commission Internationale de L’Eclairage.
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should not exceed 5◦ [110].

0°/45°                                    45°/0°

0°/diff                                    diff/0°

integrating
sphere

gloss trap

detector

detector

detector
detector

Figure 3.1: Typical illuminating and viewing measurement conditions recommended
by CIE for the colorimetric specification of opaque specimens.

The transmittance of translucent specimens depends greatly on the
way they are illuminated and mounted in the instrument. Generally
transmittance measurements are carried out with the sphere-type
spectrophotometers. For plant specimens the transmittance is usually
measured by placing the specimen at the port of entrance of the instrument
[108] (Figure 3.2). There are a number of detailed issues specific to
performing spectral measurements for translucent materials which are
beyond the scope of this book. For a comprehensive discussion of these
issues the interested reader is referred to the report by Aydinli and Kaase
[8].

The 0◦/45◦ (45◦/0◦) type spectrophotometers have been manufactured
with specimen areas up to approximately 50mm in diameter, and a typical
sphere-type spectrophotometers exposes a smaller flat area of specimen,
roughly 25mm in diameter for measurement [102]. An integrating sphere
may be of any diameter provided that the total area of the ports does not
exceed 10% of the internal reflecting sphere area [110].

Although there is no material with properties of a perfect reflecting
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Figure 3.2: Typical measurement of directional-hemispherical transmittance.

diffuser, it is possible to calibrate suitable “working standards”, such
as magnesium oxide (MgO) powder or barium sulfate (BaSO4) powder,
which are often used to cover the integrating sphere wall. For absolute
measurements, the sphere wall is the standard, and the integrating
sphere theory [76] compensates for the absolute reflectance of the sphere
wall by mathematically treating the wall reflectance as unity, since the
spectral reflectance of such working standards varies somewhat with the
wavelength (around 0.970 to 0.985 in the visible region of the light
spectrum [110]). Hence, the hemispherical measurements made with
such integrating spheres correspond to absolute values of reflectance (or
transmittance), which are subject to small errors associated with factors
such as aperture losses, small values of non-uniformity of sphere wall
reflectance and stray reflectance from sample mounts [212]. A typical
spectrophotometric record of reflectance measurements is illustrated in
Figure 3.3.

The precision of a spectrophotometer is estimated by the ability of
the instrument to replicate a measurement for a given specimen under
same spectral and geometrical conditions [110]. The best-designed,
best-constructed, and best-calibrated spectrophotometers still yield
results from the same specimen that differ from one measurement to the
next. According to MacAdam [135], the differences among readings should
be quite small and randomly different. These differences, or uncertainties,
are net results of combinations of many small fluctuations due to mutually
unrelated variations of different components of the instrument, different
factors in the environment and how the specimen is handled. In theory,
a spectrophotometer is considered to be of high precision if the spectral
measurements have an uncertainty, υ, of approximately ±0.001 [110, 135].
This means that at one time the device may read, for instance, a
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Figure 3.3: Reflectance spectra for a daisy flower (Bellis perennis) formed by a yellow
center and white petals [203].

reflectance value equal to 0.375, but at other times it may read values as
low as 0.374 or as high as 0.376. In practice, however, spectrophotometers
usually have an absolute precision between 0.993 and 0.995, i.e., an
uncertainty between ±0.007 and ±0.005 measurement units [212]. The
accuracy of a spectrophotometer is measured by the ability of the device to
provide, for a given illuminating and viewing geometries, the true spectral
reflectance and transmittances of a given specimen, apart from random
uncertainties occurring in repeated measurements [110].

3.1.2 General Formulation of Virtual Spectrophotometers

Emitters and specimens used in actual measurements usually have circular
areas [52, 76, 101, 212], which can be represented by disks with radii r1

and r2 separated by a distance D (Figure 3.4). A spectrophotometer with
integrating sphere is simulated by sending (or shooting) sample rays from
the emitter towards the specimen. These rays arrive at the specimen
through a solid angle, ~ωi, in the direction of incidence ψi, which is given
by a pair of spherical coordinates (φi, θi) (Figure 3.4). We denote the total
number of sample rays used in a virtual spectrophotometric measurement
by N .

Consider N rays shot towards the specimen for a given wavelength λ.
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Figure 3.4: Sketch of a virtual spectrophotometer.

One can assume that each ray carries the same amount of radiant power,
Φray. If the total radiant power to be shot is Φi, then the radiant power
carried by each ray is given by [172]:

Φray(λ) =
Φi(λ)

N
(3.1)

Recall that reflectance describes the ratio of reflected power to incident
radiant power, and transmittance describes the ratio of transmitted
radiant power to incident power [151]. Considering this ratio, if nr rays are
reflected towards the upper hemisphere Ωr, the reflectance of the specimen
with respect to a given wavelength λ of the incident light will be given by:

ρ(λ, ~ωi,Ωr) =
nr
N

(3.2)

Therefore, since one can simply count the number of rays reflected
to the upper hemisphere to determine a specimen’s reflectance, a virtual
spectrophotometer does not need to use an integrating sphere to collect
the reflected rays. The specimen’s transmittance is calculated in a similar
manner, i.e., by counting the number of rays transmitted to the lower
hemisphere.

Model dependent issues, such as the use of weights associated with
rays, will not be dealt with in this chapter. In the same way that an
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actual spectrophotometer is completely independent of how the specimen
interacts with light, a virtual spectrophotometer shall also be independent
of the reflectance model being tested. Moreover, these weights are usually
based on reflectances and transmittance values. As mentioned before,
if we knew these values a priori there would be no need to carry out
spectrophotometric measurements.

For applications involving data generation from a previously validated
model, the sample rays are collimated since we are basically measuring
directional-hemispherical reflectance [151]. In this case, the sample
rays have the same origin and hit the specimen at the same point.
For applications involving comparisons with actual measurements, as
mentioned earlier, the actual measurement conditions must be reproduced
as faithfully as possible. In these situations we are measuring
conical-hemispherical reflectance [151], which requires the generation
of sample rays distributed angularly according to the geometrical
arrangement of the surfaces used to represent the emitter and the
specimen. As mentioned by Crowther [52], the incident radiation from
an emitter shows no preference for one angular region over the other. So,
in order to simulate these measurement conditions, the origins and targets
of the rays are random points (or sample points) chosen on the disks used
to represent the emitter and the specimen respectively.

There are many sampling strategies that can be used to select the
sample points on the disks [172, 176]. In this book we do not intend to
determine the most accurate or the most efficient one. The merits and
drawbacks of different sampling strategies have been adequately covered
elsewhere [75, 176, 175, 178].

For the sake of completeness, we outline two strategies that can be used
in these applications. One of them is based on standard random sampling
[172]. It consists of generating sample points inside a square with sides
2r and throwing away points lying outside a disk of radius r inscribed
in the square [52]. The sample points in the square are generated using
uniformly distributed random numbers ξ1 and ξ2 on the interval [0, 1] and
the following transformation:

(x, y) = r(2ξ1 − 1, 2ξ2 − 1) (3.3)

where the pair (x, y) corresponds to the coordinates of a sample point.
Another strategy that can be used in virtual measurements is based on

the classical Monte Carlo stratified sampling or jittered sampling [172].
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It uses a warping transformation to guarantee that the sample points are
reasonably equidistributed on a disk, and enables the computation of the
pair (x, y) through the following warping function:

(x, y) = (2πξ1, r
√

ξ2) (3.4)

After generating the x and y coordinates of a sample point, for example
using either approach mentioned above, the z coordinate is added. For
a sample point on the specimen, z is equal to zero, and, for a sample
point on the emitter, z will correspond to the distance D between the
disks (Figure 3.4), which is given by the radius of the integrating sphere
of a real spectrophotometer. Finally, to obtain the origin of a sample ray,
the corresponding sample point (x, y, z) on the emitter shall be rotated
according to a specified incidence geometry given by φi and θi (Figure 3.4).

3.1.3 Practical Issues

The main question to be addressed when performing a virtual
spectrophotometric measurement is how many rays should be cast by the
emitter element, that is, how large should N be. Using a sufficiently
large number of sample rays, one will have a high probability to obtain
estimates within the region of asymptotic convergence of the expected
value of reflectance, or transmittance, being measured according to the
Bernoulli theorem [192, 37, 36].

However, as shown by numerical experiments presented by Baranoski
et al. [15], the processing time grows linearly with respect to the total
number of sample rays N since the cost of the algorithm is constant
per ray. In order to minimize these computational costs Baranoski et
al. proposed a bound on the number of sample rays derived from the
exponential Chebyshev inequality [180]. This bound is given by:

N =

⌈

ln(2
δ
)

2υ2

⌉

(3.5)

where δ corresponds to the confidence on the estimation, and υ represents
the uncertainty of the real spectrophotometer whose readings one intends
to compare the virtual measurements with. For example, considering a
confidence of 0.01 (humans do not perceive variations of light smaller than
1% [152]), and an uncertainty of 0.005, 105.02 rays are required to obtain
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reflectance and transmittance readings within the region of asymptotically
convergence.

3.2 Virtual Goniophotometry

Virtual goniophotometric measurements allow the determination of the
scattering profile of specimens. These measurements can also be used to
verify the physical characteristics of the computer model used to simulate
such scattering profile. Among these characteristics we can list reciprocity,
energy conservation and anisotropy.

3.2.1 Characteristics of Actual Goniophotometers

A goniophotometer is defined as an instrument that measures flux
(power) as a function of angles of illumination and observation [59]. This
instrument is important in remote sensing research, illumination research
and other scientific areas where the flux distribution is important. The
measurements made by a goniophotometer can be performed in different
ways, and, as a result, there are many possible configurations for these
devices. Computer graphics researchers have proposed extensions for
industry made goniophotometers [62] as well as designs based on the
use of digital cameras [114, 205]. A review of these devices is beyond
the scope of this book. A reader interested in a detailed description
of goniophotometers used in computer graphics is referred to more
comprehensive works in this area [62, 139].

Two photographs of a goniophotometer are shown in Figure 3.5
where it depicts the usage of the instrument by Combes et al. [47] to
compute BDFs of plant specimens. The light flux incident on the specimen
comes from an emitter and is captured by a detector (photometer) after
being reflected or transmitted by the specimen. For BRDF measurements
the detector(s) are placed in hemisphere above the specimen (Figure 3.5
left) and for BTDF measurements the detector(s) are placed in hemisphere
below the specimen (Figure 3.5 right).

In order to obtain a complete goniophotometric record for a simple
specimen it would be necessary to perform a formidable number of
measurements as mentioned by Judd and Wyszecki [110]. Both the emitter
and the photometer would have to be moved independently of one another
to every position on the hemisphere. In order to illustrate this aspect Judd
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Figure 3.5: Photographs of a goniophotometer showing different set-ups for BRDF
(left) and BTDF (right) measurements. (Courtesy of Stephane Jacquemoud.)

and Wyszecki perform the following calculation. Suppose that one works
with a fairly large solid angle of approximately 0.005 steradian for each
aperture. To cover the entire hemisphere (2π steradian) as closely as
possible with such an aperture without overlapping, we must use about
1000 different positions. With both the source and the photometer moved
in each of the 1000 positions one ends up making 1 million measurements!

A typical three dimensional representation of a goniophotometric
record of BRDF measurements is shown in Figure 3.6. For many
specimens the most informative goniophotometric data are taken in the
plane containing the direction of the incident light and the normal
of the specimen. Many actual goniophotometers are abridged to this
extent. The emitter movement is from θi = 0◦ to θi = 90◦ and the
photometer movement ranges from θr = 90◦ to θr = −90◦. Assuming
the same aperture sizes as before, this abridged goniophotometric record
would contain 18 × 36 = 640 data points. Like the accuracy of
spectrophotometers (Section 3.1.1), the accuracy of a goniophotometer is
also estimated by the ability of the instrument to replicate a measurement
for a given specimen under same spectral and geometrical conditions
[110]. According to data provided in the measurement literature [62], the
uncertainty of actual goniophotometers is usually around 0.5% or higher.

3.2.2 General Formulation of Virtual Goniophotometers

In order to simulate radiance measurements performed by placing a
photometer at different viewing positions, one can use radiance detectors,
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Figure 3.6: Three dimensional representation of the BRDF of a glossy specimen, i.e.,
a material with mixed reflection behavior.

which are represented by the patches of a collector sphere placed around a
specimen. Figure 3.5 presents a sketch showing the principal components
of a virtual goniophotometer and their geometrical arrangement. The light
flux incident on the specimen comes from the emitter through patch I,
and the light flux is collected by the photometer covering patch V . Both
of the illuminating and viewing directions can be varied independently
within the hemisphere above the specimen. The position of emitter and
patch I is given by the azimuth angle φi and the polar angle θi. The
positions of the photometer and patch V are given by the azimuth angle
φr and the polar angle θr.

Using this arrangement, the BRDF for a direction associated with a
given radiance detector placed in the upper hemisphere can be determined
in terms of radiant power. More specifically, it is given by the ratio
between the radiant power reaching the detector, Φr, after interacting
with the specimen, and the incident radiant power, Φi [81].

The corresponding expression used to compute the BRDF for light
incident at wavelength λ, considering the solid angle in the direction of
incidence, ~ωi, and the solid angle in the direction associated with the
radiance detector, ~ωr, is given by:

fr(λ, ~ωi, ~ωr) =
Φr(λ)

Φi(λ) ~ωr
p (3.6)
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Figure 3.7: Sketch of a virtual goniophotometer.

where:
~ωr
p = projected solid angle with respect to the direction

associated with the radiance detector.

In turn, the projected solid angle ~ωr
p is given by:
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~ωr
p =

Ar cos θr
D2
r

(3.7)

where:
Ar = area of the radiance detector,
Dr = distance from the specimen to the radiance detector,
θr = angle between the direction associated with the

radiance detector and the specimen’s normal.

Recall that the radiant power reaching the radiance detector can be
written as:

Φr(λ) = ndΦray(λ) (3.8)

where:
nd = number of rays hitting a radiance detector.

Thus, replacing Equation 3.1 and Equation 3.8 in Equation 3.6, the
expression to compute the BRDF reduces to:

fr(λ, ~ωi, ~ωr) =
nd

N ~ωr
p (3.9)

Similarly, the BTDF is calculated considering radiance detectors placed
in the lower hemisphere.

The origins of the rays are random points uniformly chosen from a disk
used to represent the surface of the emitter. The coordinates of the points
are given by pairs (x, y), which are computed using the warping function
given by Equation 3.4. The targets of the rays may also be random
points uniformly chosen from a disk used to represent the specimen.
Alternatively, we can use a pair of triangles used to represent it. In this
case, to choose a random point q on a triangle defined by the vertices q0,
q1 and q2 we can use the following expression:

q = q0 + x′(q1 − q0) + y′(q2 − q0) (3.10)

where x′ and y′ are obtained using another warping function suggested by
Shirley [172]:
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(x′, y′) = (1−
√

1− ξ3, (1− x′)ξ4) (3.11)

where:
ξ3 and ξ4 = uniformly distributed random numbers ∈ [0, 1].

3.2.3 Practical Issues

Krishnaswamy et al. [120] examined the implementation of virtual
goniophotometric devices focusing on the subdivision of the collector
sphere and on the ray density required to obtain asymptotically convergent
BRDF and BTDF estimates. Their experiments indicated that the use of
a subdivision technique based on equal project solid angles may provide
a more uniform convergence for the estimates, and an upper bound for
the number of rays can also be derived from the exponential Chebyshev
inequality. This bound is given by:

N = m

⌈

ln(2
δ
)

2υ2

⌉

(3.12)

where m gives the number of patches on the collector hemisphere, δ
corresponds to the confidence on the estimation, and υ represents the
uncertainty of the real goniophotometer whose measurements one intends
to compare the virtual measurements with. For example, considering a
confidence of 0.01, an uncertainty of 0.005 and m = 900 patches, at most
108 rays would be required to obtain asymptotically convergent BRDF
and BTDF estimates.




