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Abstract— In this paper, we investigate techniques for re-
ducing the dimensionality of skin hyperspectral reflectance
databases and maintaining a high degree of fidelity during data
reconstruction. We compare results obtained using principal
components analysis (PCA) with results provided by a piecewise
PCA approach that explores the different roles performed by
the main light attenuation agents acting within the cutaneous
tissues in the ultraviolet (UV), visible and near-infrared (NIR)
domains. Our investigation encapsulates not only skin spectral
responses obtained by varying the contents of these agents,
but also responses resulting from the absence of melanin
pigmentation associated with the vitiligo condition.

Index Terms— skin, melanin, vitiligo, piecewise PCA.

I. INTRODUCTION

The access to robust skin hyperspectral reflectance

databases is essential for the enhancement of a wide range

of biomedical applications, from the assessment of biophys-

ical properties of cutaneous tissues (e.g., [1], [2], [3]) and

the investigation of photobiological processes affecting skin

health and appearance (e.g., [4], [5], [6]), to the prevention

and screening of diseases (e.g., [7], [8], [9], [10]). Although

such databases are still not readily available, this situation

is likely to change rapidly with the development of new

technologies for the accurate measurement and predictive

modeling of skin responses within and outside the visible

domain [11], [12].

Databases composed of measured reflectance data need

to consider several dimensions associated with data capture

procedures such as spectral resolution, illumination and

viewing geometry. In the case of databases composed of

modeled reflectances, one may need to account for additional

dimensions associated with the combination of distinct spec-

imen characterization parameters. Although, in theory, space

could be saved by storing these parameters instead of the

modeled reflectance data, the accurate computation of this

data is often highly time consuming. Hence, for applications

that demand high interactivity rates, it usually needs to be

precomputed, stored offline and quickly accessed on the fly.

Regardless of the nature of the stored data, measured

or modeled, clearly the main guidelines in the design of

hyperspectral reflectance databases are compactness and low

reconstruction error [13]. Here, we investigate how PCA

[14], which is widely employed in many areas (e.g., signal
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processing [15], pattern recognition [16], colorimetry [17],

applied meteorology [18] and remote sensing [19], just to

name a few), can be used to achieve these goals with

respect to hyperspectral skin responses. We also propose

the application of a piecewise PCA approach (PPCA) based

on characteristic cutaneous light attenuation profiles, which

can lead to higher accuracy to computational cost (memory

space) ratios for human skin hyperspectral data.

II. METHODS AND DATA

Consider a skin hyperspectral reflectance database repre-

sented by a s × w matrix M , where each row contains the

reflectance spectrum of a given specimen, and each column

stores the reflectance values with respect to the sample

wavelengths. The goal is to reduce the dimensionality of M ,

i.e., the PCA approach is applied to the entire dataset, rather

than to each specimen’s reflectance spectrum.

In order to implement PCA, we choose to use the sin-

gular value decomposition (SVD) technique [15] due to its

numerical stability. Using this technique, one can obtain the

w×w matrix V and the matrix C = M ∗V . While V stores

the basis of principal components (as column vectors), C
stores the coordinates (coefficients) relative to the basis (as

row vectors).

Since the goal is to reduce the dimension of the data, one

usually chooses a reduced number of components, s′ << s,

and stores smaller versions (the first s′ columns) of C and V ,

more specifically the s× s′ matrix C′ and the w× s′ matrix

V ′, respectively. The reconstructed reflectance spectrum of

a selected specimen i, where 1 ≤ i ≤ s, is then given by:

ρr = C′

i ∗ (V
′)T , (1)

where C′

i corresponds to the ith row of matrix C′. It is

worth noting that different implementations of PCA using

SVD are possible. In particular, the implementation used in

this investigation, whose mathematical details can be found

elsewhere [20], aims to minimize the Euclidean norm of the

difference between C and C′.

It has been observed that while the melanins (eumelanin

and pheomelanin) and hemoglobins (oxy- and deoxygenated)

dominate light attenuation within human skin in the UV-

Visible (250-700 nm) range and their influence is increas-

ingly diminished in the NIR-A (700-1400 nm) region, lipids

and water start to contribute to light attenuation in this region

and have a dominant role in the NIR-B (1400-2500 nm)

range [21]. These well defined regions suggest that the use of

an adaptive PCA approach may result in lower reconstruction

errors and more compactness.
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In other words, instead of an integral application of

PCA over the entire hyperspectral domain of interest

(250-2500 nm), we can perform a piecewise application

of PCA, in which each piece corresponds to one of the

three regions (UV-Visible, NIR-A and NIR-B). Since the

effectiveness of the PCA approach depends on the repre-

sentativeness of the reflectance data used in the singular

value decomposition, applying PPCA to matrices for each of

the three regions yields different components than applying

PCA to a matrix for the entire domain of interest. After

eliminating components that have a small impact on the

overall reflectance curves, reconstructing a particular curve

with PPCA gives pieces for each region, which might not join

smoothly at region boundaries. Although it would be possible

to use a constrained PPCA algorithm to ensure smooth joins,

we found such discontinuities to be negligible with respect

to skin reflectance data.

In our experiments, we considered a skin hyperspectral

reflectance database (SHRD) composed of 144 distinct skin

directional-hemispherical curves (Figure 1) with a spectral

resolution of 5 nm. These curves were obtained using a

novel hyperspectral light transport model, henceforth referred

to as HyLIoS (Hyperspectral Light Impingement on Skin)

[12]. In their computation, we considered an angle of in-

cidence of 10◦ and variations in the parameters associated

with the main light attenuation agents: eumelanin (from 24

to 62.5 g/L), pheomelanin (from 1.5 to 5 g/L, dermal blood

content (from 0.225 to 3.12 %), water content (from 26.25

to 93.75 %), and lipids content (from 11.32 to 0.25 %).

Note that these parameter ranges are within physiologically

acceptable limits indicated in the scientific literature [12].

Since relevant biomedical applications (e.g., [1], [3]) re-

quire the use of reference reflectance curves obtained at

amelanotic skin sites such as those found in vitiligo subjects,

we have also included in the database amelanotic curves

obtained by removing the melanin pigmentation. Consid-

ering that such curves markedly depart from typical skin

reflectance curves, they also allowed us to expand our scope

of in silico experimental observations.

For consistency with related works (e.g., [13], [17]), we

use the root mean square error (RMSE) measure in our

experiments. The RMSE values were computed using the

following expression:

RMSE =

√

√

√

√

1

N

N
∑

j=1

(ρm(λj)− ρr(λj))2, (2)

where ρm and ρr correspond to the reflectance values (at a

given wavelength λj) extracted from the modeled (HyLIoS)

and reconstructed (PCA or PPCA) curves, respectively, and

N corresponds to the total number of wavelengths sampled

with a 5 nm resolution within a selected spectral region.

As one increases the number of components (and coef-

ficients) used in the reconstruction of spectral curves, their

RMSE values with respect to the original modeled curves

decreases. The goal is to obtain the best compromise between

the number of components and the RMSE. We selected as

Fig. 1. Plot depicting the skin hyperspectral reflectance database (SHRD)
employed in this investigation.

TABLE I

MAXIMUM RMSE VALUES COMPUTED FOR THE PCA RECONSTRUCTED

CURVES (250-2500 nm) WITH RESPECT TO THE CURVES FOR THE

MELANOTIC (96), AMELANOTIC (48) AND ALL SPECIMENS DEPICTED IN

THE SHRD OBTAINED USING THE HYLIOS MODEL [12]. THE VALUES

IN BOLDFACE FOR THE MELANOTIC AND AMELANOTIC SUBSETS AS

WELL AS THE ENTIRE DATABASE CORRESPOND TO SPECIMENS S32,

S135 AND S127, RESPECTIVELY.

PCA Components Specimens
Melanotic Amelanotic All

1 0.0504 0.0337 0.0738
2 0.0099 0.0172 0.0245
3 0.0058 0.0099 0.0171
4 0.0037 0.0030 0.0069

8 0.0014 0.0012 0.0023

reference for low-reconstruction error a RMSE value equal to

0.01, which has also been employed for this purpose in works

involving other optically-complex natural materials such as

plant leaves [13].

In order to further illustrate different levels of reconstruc-

tion fidelity, we have also generated skin swatches. In the

case of visible reflectance data, we employed a standard

XYZ to sRGB conversion procedure [22] considering a light

source that approximates a standard D65 illuminant [23]. In

the case of UV and NIR reflectance data, we integrated the

reflectance values over their respective spectral region and

applied a tinted grayscale filter to the resulting values, which

are depicted in pseudo colors.

III. RESULTS AND DISCUSSION

Initially, we applied PCA to the SHRD melanotic subset,

and computed the RMSE values associated with all recon-

structed melanotic curves obtained using different numbers

of components. The summary of the resulting maximum

RMSE values provided in Table I indicates that only two

components were required to reconstruct the melanotic

curves with a RMSE below 0.01. This level of compression is

significant, especially if compared to similar results obtained

for plant leaves, which required at least five components

[13]. A comparison between the original and reconstructed

curve for specimen S32 (with the maximum RMSE value)
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Fig. 2. Modeled (HyLIoS) and reconstructed (PCA using 2 components)
curves for specimen S32. Error bars represent differences between the
curves, magnified by a factor of 10. Resulting RMSE values for the
UV-Visible, NIR-A and NIR-B regions were 0.0116, 0.0102 and 0.0089,
respectively.

Fig. 3. Skin swatches in the UV (left), visible (centre) and NIR (right)
ranges obtained for specimen S32 using PCA with 1 component (top), 2
components (middle) and the original modeled curve (bottom) provided by
HyLIoS [12].

is presented in Figure 2, and their close agreement is further

illustrated by the skin swatches depicted in Figure 3.

We then applied PCA to the SHRD amelanotic subset, and

computed the RMSE values associated with all reconstructed

amelanotic curves obtained using different numbers of com-

ponents. The summary of the resulting maximum RMSE

values provided in Table I indicates that three components

were required to reconstruct the amelanotic curves with a

RMSE below 0.01. A comparison between the original and

reconstructed curve for specimen S135 (with the maximum

RMSE) is presented in Figure 4.

Finally, we applied the PCA approach to the entire

SHRD, and computed the RMSE values associated with

all reconstructed melanotic and amelanotic curves obtained

using different numbers of PCA components. Due to the

noticeable deviation of the amelanotic curves from typical

skin reflectance curves, it was expected that a larger number

of components would be required to keep the reconstruction

error low. Although we needed to use more components

(in comparison with the reconstruction of the curves in the

melanotic subset), the summary of the resulting maximum

RMSE values provided in Table I indicates that only four

components were required to reconstruct all curves with

a RMSE below 0.01. Hence, even considering extreme

responses associated with amelanotic specimens, one can

obtain a high compression accompanied by a relatively low-

reconstruction error as illustrated by the comparison between

the original and reconstructed curve for specimen 127 (with

the maximum RMSE value) presented in Figure 5.
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Fig. 4. Modeled (HyLIoS) and reconstructed (PCA using 3 components)
curves for specimen S135. Error bars represent differences between the
curves, magnified by a factor of 10. Resulting RMSE values for the
UV-Visible, NIR-A and NIR-B regions were 0.0207, 0.0054 and 0.0022,
respectively.
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Fig. 5. Modeled (HyLIoS) and reconstructed (PCA using 4 components)
curves for specimen S127. Error bars represent differences between the
curves, magnified by a factor of 10. Resulting RMSE values for the
UV-Visible, NIR-A and NIR-B regions were 0.0125, 0.0042 and 0.0046,
respectively.

When we repeated the experiments employing the PPCA

approach (Figures 6 to 8), we were able to obtain even lower

reconstruction errors using the same number of components.

Besides the overall reduction of reconstruction errors, in-

dicated by the lower RMSE values computed for the PPCA

reconstructed curves, a more detailed inspection of the results

provided by PCA (Figures 2, 4 and 5) and PPCA (Figures 6,

7 and 8) revealed a closer qualitative agreement provided

by the latter approach, notably in the visible domain. This

aspect is also highlighted by the comparison of PCA and

PPCA derived skin swatches depicted in Figure 9.

We remark that light attenuation is not affected by the

melanins and hemoglobins in the NIR-B. As a result, in this

region of the light spectrum, one can observe less varia-

tions among the spectral profiles of the different specimens

(Figure 1). This, in turn, can lead to closest reconstructions

(smallest RMSE values) being obtained in the NIR-B.

IV. CONCLUSION

Our findings indicate that substantial storage savings can

be obtained using a small number of PCA components in

the reconstruction of skin hyperspectral reflectance curves.

Moreover, the resulting low reconstruction errors can be

further reduced using the same number of components by

applying the proposed biophysically-based PPCA approach

tailored for human skin hyperspectral reflectance databases.
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Fig. 6. Modeled (HyLIoS) and reconstructed (PPCA using 2 components)
curves for specimen S32. Error bars represent differences between the
curves, magnified by a factor of 10. Resulting RMSE values for the
UV-Visible, NIR-A and NIR-B regions are 0.0024, 0.0058 and 0.0024,
respectively.
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Fig. 7. Modeled (HyLIoS) and reconstructed (PPCA using 3 components)
curves for specimen S135. Error bars represent differences between the
curves, magnified by a factor of 10. Resulting RMSE values for the
UV-Visible, NIR-A and NIR-B regions are 0.0018, 0.0026 and 0.0013,
respectively.
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