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Abstract—The mineralogy and environmental history of Mars
are being extensively studied through remote sensing observations
paired with laboratory and in situ experiments. A significant por-
tion of these experiments is being devoted to the identification and
mapping of different iron oxides present in the Martian terrains.
Among these compounds, goethite has been an object of great
interest since its occurrence can be interpreted as mineralogical
evidence of past aqueous activity on those landscapes. Although
such experiments can provide valuable information regarding the
presence of these minerals, the scope of the resulting observa-
tions may be hindered by logistics and cost-related constraints.
We believe that predictive computer simulations can be employed
to mitigate some of these constraints and contribute to the gen-
eration and validation of hypotheses in this area. Accordingly, we
propose the use of SPLITS (Spectral Light Transport Model for
Sand) in investigations involving the spectral signatures of iron-
bearing regions of Mars. In this paper, we initially demonstrate the
predictive capabilities of the SPLITS model in this context through
qualitative comparisons of modeled results with actual observa-
tions and measured data. Using the resulting modeled reflectance
curves as our baseline data, we then perform a series of con-
trolled computational experiments to investigate how variations
on goethite and hematite content affect the spectral responses of
Martian sand-textured soils.

Index Terms—Iron oxide, Mars, reflectance, regolith, sand,
simulation, spectral model.

I. INTRODUCTION

M ARS is covered by loose, particulate material, called
regolith, characterized by the presence of iron oxides

[1]–[3], such as hematite and goethite, whose spectral proper-
ties are directly associated with the overall reddish appearance
of the Martian surface and the butterscotch color of the Martian
sky (Fig. 1). The identification and mapping of these iron-
rich compounds is central in geoscientific studies of the “red
planet”– [4]. These minerals are indicators of environmental
factors that are of relevance not only for the understanding of
the origins of Martian terrains [5]–[7], but also for the search
for potential environments that can sustain life on Mars [1], [8].
More specifically, iron oxides contain in their formula the fer-
rous (Fe2+) and/or the ferric (Fe3+) oxidation states of iron,
which are considered to be associated with unweathered and
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weathered components of the Martian surface, respectively [1],
[7]. For example, the ferric iron-oxide goethite forms as a prod-
uct of aqueous processes in natural environments, and it has
the hydroxide anion (OH−) as an essential part of its struc-
ture (≈10% H2O by weight) [6], [9]. These characteristics of
goethite have led its identification in certain Martian terrains
to be interpreted as mineralogical evidence of past aqueous
activity on those areas [6], [9].

Arguably, the ferrous and ferric oxidation states of iron
are the most spectrally active cations in the visible to near-
infrared (VNIR) remote sensing of planetary surfaces [1], [7].
Accordingly, valuable scientific information about the miner-
alogy [6], [9], lithology [10], environmental history [1], [6]
and astrobiology [8] of Martian regions covered by iron-rich
regolith can be obtained through remote sensing observations
coupled with measurements and simulations. Moreover, such
combined efforts are crucial for the optimization of in situ
investigations to be carried out by future missions to Mars [3],
[5]. We note that remote observations paired with deterministic
computer simulations are already providing relevant contribu-
tions to the analysis of Martian terrains with distinct morpho-
logical and mineralogical characteristics (e.g., [11] and [12]).

Laboratory experiments used in the investigation of Martian
terrains usually employ soil analogs, or simulants [2], [13]–
[18], since true Martian regolith samples are either not available
[19] or might be too valuable [20] to be modified and con-
taminated by experimental procedures [3]. However, although
soil analogs have been extensively used in studies regarding
the thermal, mechanical, morphological, and chemical prop-
erties of Martian regolith, they have a limited applicability in
investigations involving its spectral properties. This limitation
is mostly due to the fact that certain mineralogical and physical
properties (e.g., distinct iron oxide contents, density of parent
material, and grain shape) cannot be effectively mimicked or
controlled in experiments involving regolith simulants [3].

In order to overcome the investigation constraints mentioned
above, we propose the use of a simulation framework that
allows for systematic computational experiments involving the
spectral properties of sandy landscapes and regolith-covered
terrains found in Mars. Within this framework, the light inter-
actions with the particulate materials forming these regions
are simulated using a stochastic computer model, known as
SPLITS (Spectral Light Transport Model for Sand) [21], that
accounts for the morphological and mineralogical character-
istics of the constituent grains of these materials and their
distribution in the pore medium [22]. Employing the pro-
posed framework, researchers can change selected material
parameters and analyse their effects on the spectral signature
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Fig. 1. Photos of the Gusev crater taken by the panoramic camera on board the
Mars Exploration Rover Spirit (courtesy of NASA).

of these regions while keeping the other parameters constant.
In fact, SPLITS can be run online [23] via a model distribution
system [24] that enables researchers to specify experimental
conditions (e.g., angle of incidence and spectral range) and
material parameters (e.g., amount of iron oxides, soil tex-
ture and particle type distribution), and receive customized
simulation results.

In this paper, which is an extended and updated version of a
conference presentation [25], we initially describe a first round
of computational experiments performed to demonstrate the
predictive capabilities of the SPLITS model with respect to
the qualitative reproduction of spectral trends associated with
Martian regolith. In these experiments, we qualitatively com-
pared modeled results with actual observations and measured
data available for five iron-bearing regions of Mars, namely the
Olympus-Amazonis [26], the Oxia Palus [26], and three dif-
ferent sites located in the Gusev crater [27]. We then present
a second round of computational experiments performed to
qualitatively assess the impact of goethite and hematite on the
spectral signatures of Martian iron-rich regolith. In these exper-
iments, we employed as baseline the modeled results obtained
in the first round.

Although the presence of iron oxides is known to sig-
nificantly affect the spectral signatures of sandy landscapes
[7], [14], to the best of our knowledge, controlled computa-
tional experiments to qualitatively investigate the sensitivity of
these signatures with respect to specific changes on goethite
and hematite content have not been performed to date with
respect to Martian sand-textured soils. From a scientific point
of view, such an investigation could contribute to enhance the
procedures for the identification and mapping of these miner-
als through remotely deployed devices. We remark that such

controlled experiments, in which only specific sample parame-
ters associated with the presence of selected minerals (e.g., ratio
of hematite to goethite and their respective mass fractions) are
varied while all other material parameters are kept fixed, have
limited feasibility under actual laboratory conditions due to the
practical issues mentioned earlier. For example, these experi-
ments would require the removal or replacement of one mineral
by another (e.g., goethite by hematite) while keeping the same
ratio of pure, mixed, and coated particles. Clearly, these are not
low-cost processes to be performed in true samples, which are
not readily available in the first place [19], [20].

This paper is organized as follows. In Section II, we
briefly outline the material characterization data, the reference
datasets, and the computational procedures employed in this
work. In Section III, we report our findings and discuss their
theoretical and practical implications. Finally, in Section IV,
we close this paper and outline directions for future research in
this area.

II. MATERIALS AND METHODS

A. Particulate Material Characterization Data

We employed physical data obtained for Martian regolith
whenever such data was available (e.g., porosity of 60% [28]),
and average data associated with terrestrial sandy soils other-
wise. For example, it has been stated that the regolith materials
found in the reference regions considered in this work, namely
the Olympus-Amazonis [26], the Oxia Palus [26], and three dif-
ferent sites located in the Gusev crater [27], contain iron oxides
such as hematite, goethite, and magnetite, and have basalt as
their primary parent material [6], [9], [27], [29]. Accordingly,
in our simulations, we employed basalt (with a density of
3 kg/L [29]) as the parent material, and considered the iron
oxides appearing as pure particles [1], contaminants in the par-
ent material [30], or coatings within an illite matrix [31]. The
particle-type distributions considered in the simulations are thus
given in terms of the percentages of pure (μp), mixed (μm), and
coated (μg) grains [21], [32].

We remark that the SPLITS model takes into account the
individual morphological characteristics of the material con-
stituent grains. More specifically, their sphericity and roundness
are normally distributed, with their mean and the standard devi-
ation derived from data provided by Vepraskas and Cassel [33],
and constrained to fall within their respective ranges derived
from the same data (Table I). Their size, represented by their
diameter D is distributed according to a piecewise log-normal
distribution as suggested by Shirazi et al. [34], i.e., logD is
normally distributed. This distribution is characterized by two
parameters, namely the geometric mean particle diameter di
and its standard deviation σi, which are functions of the soil
texture. That is, the percentages of the sand-sized, silt-sized,
and clay-sized particles are employed to compute the respec-
tive geometric mean diameters and standard deviations of these
particles using a particle-size distribution provided by Shirazi
et al. [34]. In this work, the values provided for these parame-
ters are listed in Table II. Note that the presence of clay-sized
particles was assumed to be negligible. The reader interested in
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TABLE I
MEAN, STANDARD DEVIATION, AND RANGE VALUES FOR SPHERICITY

AND ROUNDNESS PROVIDED BY VEPRASKAS AND CASSEL [33]

TABLE II
GEOMETRIC MEAN PARTICLE DIAMETERS (GIVEN IN MM) AND

STANDARD DEVIATIONS FOR DIFFERENT MIXTURES OF SAND-SIZED

PARTICLES (s1) AND SILT-SIZED PARTICLES (s2)

The diameters and standard deviations for sand-sized
particles (d1 and σ1, respectively) and silt-sized
particles (d2 and σ2, respectively) are provided by
Shirazi et al. [34].

TABLE III
INPUT DATASETS I, II, III, IV, AND V USED TO OBTAIN MODELED

REFLECTANCE CURVES FOR FIVE SITES ON DISTINCT REGIONS OF

MARS: OLYMPUS-AMAZONIS, OXIA PALUS, AND GUSEV CRATER (SITES

D-GREEN, D-RED, AND E-GREEN), RESPECTIVELY

The texture of the samples is described by the percentages (%) of
sand and silt (represented by s1 and s2, respectively). The particle-
type distributions considered in the simulations are given in terms of
the percentages of pure (μp), mixed (μm), and coated (μg) grains.
The parameter rhg corresponds to the ratio between the mass fraction
of hematite to the total mass fraction of hematite and goethite, which
is given by ϑhg . The parameter ϑm represents the mass fraction of
magnetite.

more details about the parameter space of the SPLITS model is
referred to related publications [21], [32].

The remaining parameter values used to obtain the modeled
reflectance curves associated with the five reference Martian
regions are given in Table III. These include the ratio between
the mass fraction of hematite to the total mass fraction of
hematite and goethite, denoted by rhg , the total mass fraction of
hematite and goethite, denoted by ϑhg , and the total mass frac-
tion of magnetite, denoted by ϑm. For example, in the case of
dataset I, the percentage of hematite and goethite corresponds
to 0.5% (ϑhg = 0.005), with hematite contributing to 75% of
the total amount of hematite and goethite (rhg = 0.75), and the
percentage of magnetite corresponds to 0% (ϑm = 0).

The refractive indices and extinction coefficients for the
iron oxides considered in our simulations, namely hematite,
goethite, and magnetite, are depicted in Fig. 2. The data for
goethite was originally referred by Egan and Hilgeman [35] as
limonite data. We note, however, that limonite is the general
term for hydrous ferric iron oxides, and it is mostly employed to
denote goethite [36]. The refractive indices for the coating and
parent materials considered in our simulations, namely illite
and basalt, respectively, are depicted in Fig. 3.

Fig. 2. Spectral data for the iron oxides accounted for in our simulations:
hematite [37], goethite [35], and magnetite [38]. Top: refractive index (real
part). Bottom: extinction coefficient (refractive index, imaginary part).

B. Spectral Reference and Modeled Datasets

The main purpose of the comparisons depicted in this paper
is to assess the use of computer simulations in qualitative
investigations involving the spectral properties of Martian sand-
textured soils. Since an exhaustive comparison with all spectral
datasets available in the literature is beyond the scope of this
work, we selected as reference the spectral datasets provided
by Mustard and Bell [26], depicted in several relevant works in
this area (e.g., [3], [7], [10], [15], [39]), and spectral datasets
obtained more recently by Bell et al. [27] through in situ
measurements. Despite limitations associated with the actual
observation and measurement conditions (e.g., coarse spatial
resolution [26] and possible small variations due to topographic
effects [27]), these spectral datasets capture the main qualita-
tive spectral trends observed in the target Martian sand-textured
soils, and are consistent with related observations reported in
the literature (e.g., [7], [8]).

The measured spectra for the Olympus-Amazonis and the
Oxia Palus regions provided by Mustard and Bell [26] (Fig. 4)
were obtained by merging data acquired through the ISM
(Imaging Spectrometer for Mars) experiment on the 1989
Soviet Phobos-2 mission with Earth-based telescopic obser-
vations of Mars. More precisely, ISM data in 750–1510 nm
region, which was acquired with a spectral resolution of
22.5 nm and a spatial resolution of 22× 22 km [40], was
combined with Earth-based telescopic observations in the 400–
1000 nm region, which were acquired with a spectral resolution
of 9 nm and a spatial resolution of 500–600 km with respect
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Fig. 3. Spectral data for the coating matrix and parent material considered in
our simulations, namely illite [35] and basalt [35], respectively. Top: refrac-
tive index (real part). Bottom: extinction coefficient (refractive index, imaginary
part).

to diameter of the observation spots [41]. The telescopic data
was scaled to the ISM data in the 770–930 nm region [26].
According to Mustard et al. [26], [40], atmospheric absorptions
were removed from the ISM data. In the case of the telescopic
data, according to Bell et al. [41], most or all of the debilitat-
ing effects of the terrestrial atmosphere were removed and there
was little dust storm activity on Mars during the times of obser-
vation resulting in a Martian atmosphere free of optically thick
airborne dust.

Within the SPLITS algorithmic ray optics formulation, a ray
interacting with a given material sample can be associated with
any selected wavelength within the 400–1000 nm region of
interest [21]. Hence, SPLITS can provide reflectance readings
with different spectral resolutions. For consistency, however,
we considered a spectral resolution of 5 nm in all modeled
curves depicted in this work. In terms of illumination and col-
lection geometries, the SPLITS model can provide bidirectional
reflectance quantities [21] by recording the direction of the out-
going rays using a virtual gonioreflectometer [42]. In addition,
one can obtain directional-hemispherical reflectance quantities
[43] by integrating the outgoing rays with respect to the collec-
tion hemisphere using a virtual spectrophotometer [44], [45].
Similarly, bihemispherical or biconical quantities can be calcu-
lated by integrating bidirectional reflectance values with respect
to the incident and collection hemispheres [21], [42].

The fact that the composite datasets provided by Mustard
et al. [26] cover very large areas makes their comparison

Fig. 4. Qualitative comparisons of measured and modeled spectra for bright
(Olympus-Amazonis) and dark (Oxia Palus) regions of Mars. The measured
composite spectra provided by Mustard and Bell [26] was obtained by merging
data acquired through the ISM experiment on the 1989 Soviet Phobos-2 mission
with Earth-based telescopic observations of Mars, and removing atmospheric
absorptions. Top: Olympus-Amazonis region. Bottom: Oxia Palus region. The
modeled data were obtained employing the SPLITS model [21], [23] and using
the input datasets I and II, respectively, given in Table III.

with bidirectional simulation readings inappropriate. Hence, we
selected to compare them with directional-hemispherical read-
ings (Fig. 4) for consistency with the literature. For example,
these composite datasets have been qualitatively compared with
directional-hemispherical reflectance readings obtained for the
Mars soil simulant JSC Mars-1 by Allen et al. [13], [15],
[16] and Sieferlin et al. [3] (Fig. 5). Recently, Maturilli et al.
[17] and Pommerol et al. [18] obtained biconical reflectance
and bidirectional reflectance readings, respectively, for the the
same soil simulant. The qualitative trends were exactly the
same as the directional-hemispherical readings obtained by
Allen et al. [13], [15], with the quantitative differences being
unremarkable. We also note that Allen et al. [15] mentioned
that their reflectance readings closely agree with the spectrum
obtained by Morris et al. [46] for another soil simulant, which
was obtained using a Cary-14 directional-hemispherical spec-
trometer. The same device was used to obtain the directional-
hemispherical reflectance measurements used by Bell et al.
[47] in the calibration of the reflectance datasets measured at
the Gusev crater sites, which are also employed as qualitative
references in this work (Fig. 6).

The modeled directional-hemispherical reflectance curves
computed by SPLITS were obtained casting 106 rays from an
angle of incidence equal to 0◦, and collecting all rays reflected
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Fig. 5. Qualitative comparisons of measured spectra for bright (Olympus-
Amazonis) and dark (Oxia Palus) regions of Mars provided by Mustard and Bell
[26] with the measured spectrum of a Martian regolith simulant (JSC Mars-1)
provided by Allen et al. [13], [15], [16].

into the upper hemisphere using a virtual spectrophotometer
[44]. Recall that reflectance is defined as the ratio of reflected to
incident flux [48], while reflectance (radiance) factor is defined
as the ratio of the radiant flux actually reflected by a sam-
ple surface to that which would be reflected into the same
reflected-beam geometry by a diffuse standard surface irradi-
ated in the exactly same way [49], [50]. According to Judd [49]
and Nicodemus [50], the directional-hemispherical reflectance
and the hemispherical-directional reflectance (radiance) factor
are numerically equivalent for a given direction as a direct
consequence of the Kirchhoff’s law [51] and the Helmholtz
reciprocity principle [49]. The reader interested in the mathe-
matical derivation of this numerical equivalence is referred to
the seminal papers by Judd [49] and Nicodemus [51]. Hence,
in practical applications involving reflectance measurements
for materials characterized by a predominant diffuse behavior,
these quantities are often used interchangeably [52]. For exam-
ple, the spectra associated with the three sites at the Gusev
crater, also employed as reference in this work (Fig. 6), were
obtained using a multispectral (11 channels) imaging system
(panoramic camera, also referred to as Pancam camera) on
board the Mars Exploration Rover Spirit, and described in terms
of reflectance (radiance) factor by Bell et al. [27]. In the paper
addressing the calibration of the device used in their acquisi-
tion, these quantities are described by Bell et al. [47] in terms
of directional-hemispherical reflectance.

C. Computational Experiments

Our computational experiments are divided into two rounds.
In the first round, we assessed the predictive capabilities of
the SPLITS model and obtained modeled reflectance curves
for the five reference Martian regions using the datasets pro-
vided in Table III. In the second round of experiments, we
assessed the impact of variations on the hematite and goethite
contents. Since different contents of hematite and goethite have
been assigned to the five datasets (Table III) used to obtain
modeled reflectance curves, in order to strengthen our assess-
ment of the impact of each of these minerals, we consider
test cases that allowed us to examine the effects resulting

Fig. 6. Qualitative comparisons of measured and modeled spectra for different
sites at the Gusev crater on Mars. The measured spectra provided by Bell et al.
[27] was obtained from multispectral images acquired using a digital imaging
system (panoramic camera) on board the Mars Exploration Rover Spirit. Top:
site D-green. Middle: site D-red. Bottom: site E-green. The modeled data was
obtained employing the SPLITS model [21], [23] and using the input datasets
III, IV, and V, respectively, given in Table III. Note that we consider a lower
limit of 450 nm for consistency with the actual measured data.

from the complete removal of one them, namely goethite,
whose identification has been connected to the putative aque-
ous activity in early Martian environments [6], [9]. Note that
by removing goethite, we were also able to assess the indi-
vidual impact of hematite, arguably the most investigated iron
oxide in connection with geoscientific studies about Mars
[1], [4], [5], [9], [10].

To compose these test cases, we computed the correspond-
ing reflectance curves using modified versions of the base-
line datasets used to compute the modeled curves during the
first round of experiments. In these modified versions of the
datasets, only specific parameters were changed (one at a time):
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the ratio between the mass fraction of hematite to the total
mass fraction of hematite and goethite (rhg), and the total mass
fraction of hematite and goethite (ϑhg).

After the two rounds of experiments outlined above, we per-
formed a parameter differential sensitivity analysis [53], [54],
also known as direct sensitivity analysis. It consists in the com-
putation of a sensitivity index for a specific parameter. This
index, which was introduced by Hoffman and Gardner [55]
to evaluate uncertainties in environmental assessment models,
provides the ratio of the change in output to the change in the
selected parameter while all other parameters remain fixed. A
sensitivity index of 1.0 indicates complete sensitivity (or maxi-
mum impact), while a sensitivity index less than 0.01 indicates
that the output is insensitive to changes in the parameter [55].
Accordingly, we computed the mean sensitivity index (MSI)
for the spectral regions of interest to assess the mean ratio of
change in reflectance to the change in the specific parameters
(rhg and ϑhg , one at the time) associated with the iron oxide
contents. This index is expressed as

MSI =
1

N

N∑

i=1

|ρb(λi)− ρm(λi)|
max{ρb(λi), ρm(λi)} (1)

where ρb and ρm correspond to the reflectances associated with
the baseline and modified datasets, respectively, and N is the
total number of wavelengths sampled with a 5-nm resolution
within a selected spectral region.

We remark that the purpose of our sensitivity investigations is
twofold, namely to assess the influence (impact) of key param-
eters (in our case associated with iron oxide contents) and to
guide future research efforts in this area. Accordingly, in order
to assess this influence, we employed the sensitivity index,
arguably one of the most reliable sensitivity measures [54]. We
note that other sensitivity measures are available in the liter-
ature, and the readers interested in an extensive comparison
of their performance and reliability are referred to the com-
prehensive reviews by Hamby [53], [54]. In addition, readers
interested in issues directly related to model inversion proce-
dures or associated with the extraction of information from
hyperspectral images, which are outside the scope of this work,
are referred to related works in these areas [56]–[59].

III. RESULTS AND DISCUSSION

Initially, we qualitatively compared modeled results with
measured spectra for the Olympus-Amazonis and Oxia Palus
regions [26]. We remark that the measured curves depicted in
Fig. 4 correspond to composite spectra obtained for large areas
by merging data captured using a scanning imaging spectrome-
ter from the altitude of orbit of 6300 km [40] with data acquired
using Earth-based telescopic observations [41] (Section II-B).
As a result, these measured composite spectra incorporate a cer-
tain degree of spatial and temporal variabilities that cannot be
fully reproduced through simulations, either based on computer
models (Fig. 4) or regolith simulants (Fig. 5), associated with
discrete experimental conditions. Despite these constraints, the
modeled reflectance curves obtained using SPLITS captured
the main qualitative trends depicted in the measured reflectance

curves, as it can be observed in the graphs presented in Fig. 4.
For example, it has been widely observed that most Martian
surface materials bearing ferric oxides, such as hematite and
goethite, are characterized by a smooth reflectance increase
toward the red-end of the visible light spectrum, with a slope
varying from region to region on Mars and a peak between 700
and 800 nm [7], [8]. These spectral features are reproduced in
the modeled reflectance curves depicted in Fig. 4.

In order to further examine the predictive capabilities of the
SPLITS model, we also compared modeled reflectance spectra
with in situ measured spectra for different sites at the Gusev
crater. These measured spectra were acquired through a multi-
spectral imaging system on board the Mars Exploration Rover
Spirit, and they were estimated to be within a 5%–10% absolute
accuracy [27]. The system was mounted on a mast assembly
≈1.5 m above the Martian surface, rendering any atmospheric
influence negligible. It is worth noting, however, that the mea-
sured spectra was not corrected for local topographic effects
[27]. Although this aspect makes direct quantitative compar-
isons difficult, it does not preclude qualitative comparisons. As
it can observed in the graphs presented in Fig. 6, the modeled
curves show good qualitative agreement with their measured
counterparts. We note that this level of qualitative agreement
was achieved despite the fact that not all minerals found in these
regions could be accounted for in the simulations due to the lack
of reliable supporting data such as spectral indices of refraction
and extinction coefficients.

In our next round of computational experiments, we com-
pared modeled spectra (Figs. 7 and 8) obtained using modified
versions of the baseline datasets I–V (Table III) associated
with two test cases outlined in Section II-C. In test case 1, we
replaced goethite by hematite (resulting in rhg = 1) without
changing to total mass fraction of the iron oxides, i.e., keep-
ing (ϑhg) fixed (baseline value). In test case 2, we reduced the
total iron oxide content by setting ϑhg equal to original (base-
line) mass fraction of hematite, while maintaining rhg = 1. We
also compute MSI values (Figs. 9 and 10) to further assess the
impact of the goethite and hematite content changes (associated
with the two test cases) across the visible (400–700 nm), NIR
(700–1000 nm) and VNIR (400–1000 nm) regions of interest.

As it can be observed in the graphs associated with datasets
I and II presented in Fig. 7, the replacement of goethite by
hematite (case 1) resulted in a decrease in reflectance values
within the 400–1000 nm range, which was expected consider-
ing the stronger absorptive behavior of hematite in comparison
with the absorptive behavior of goethite (Fig. 2). For dataset
II, which had the smallest and largest mass fractions initially
assigned to hematite and goethite, respectively, this replace-
ment resulted in a more pronounced reflectance decrease. This
can be explained by the fact that the replacement of goethite by
hematite resulted in a more substantial increase in the hematite
content. Note that in the region below 500 nm, the extinction
coefficient of hematite is characterized by high values (Fig. 2).
Consequently, an increase in the hematite content did not lead to
a significant decrease in reflectance in this region since absorp-
tion was already high below 500 nm due to the corresponding
high extinction coefficient values of this mineral. This behav-
ior is also reflected in the MSI values computed for dataset II
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Fig. 7. Comparison of modeled spectra obtained considering two test cases
using as baseline the datasets I (top) and II (bottom) provided in Table III.
Case 1: replacement of the goethite by hematite (resulting in rhg = 1) with-
out changing to total mass fraction of the iron oxides, i.e., keeping (ϑhg)
fixed (baseline value). Case 2: reduction of total iron oxide content by setting
ϑhg equal to original (baseline) mass fraction of hematite, while maintaining
rhg = 1.

(Fig. 9), which indicated a slightly stronger impact in the NIR
region in comparison with the visible region.

With respect to test case 2, the reduction of the total iron
content (now formed only by hematite) to the initial hematite
content resulted in distinct behaviors as indicated by the corre-
sponding curves presented in Fig. 7. More specifically, one can
observe a significant reflectance increase in NIR region for the
modified dataset II with respect to the associated baseline curve.
We remark that this dataset had the smallest and largest mass
fractions initially assigned to hematite and goethite, respec-
tively. It is worth mentioning that the replacement of goethite
by hematite followed by the total iron oxide content reduc-
tion is equivalent to substituting the particles of goethite in the
mixed grains by hematite, effectively resulting in the removal
of goethite, while keeping the same original (baseline) content
of hematite.

Hence, comparing case 2 (hematite only) for dataset II
(Fig. 7) with the corresponding baseline case (with hematite and
goethite), the reflectance decrease in the visible region can be
explained by the high extinction coefficient values of hematite
below 700 nm (Fig. 2). In contrast, the reflectance increase in
the NIR region can be attributed to the high refractive index val-
ues of hematite in this region since both hematite and goethite
are characterized by low extinction coefficient values above
700 nm (Fig. 2).

Fig. 8. Comparison of modeled spectra obtained considering two test cases
using as baseline the datasets III (top), IV (middle), and V (bottom) provided in
Table III. Case 1: replacement of the goethite by hematite (resulting in rhg =
1) without changing to total mass fraction of the iron oxides, i.e., keeping (ϑhg)
fixed (baseline value). Case 2: reduction of total iron oxide content by setting
ϑhg equal to original (baseline) mass fraction of hematite, while maintaining
rhg = 1.

Comparing the baseline curves for both datasets with their
respective case 2 (hematite only) curves, one can also observe
a less pronounced reflectance slope in the 600–800 nm range
(Fig. 7) for dataset II, which can be attributed to the more
dominant presence of goethite associated with this dataset.
This spectral smoothing role of goethite can be explained
by the fact that the extinction coefficient values of goethite
are more uniform in comparison with the extinction coef-
ficient values of hematite across the 600–800 nm range
(Fig. 2).

When we repeated the simulations considering modified ver-
sions of datasets III, IV, and V (Fig. 8), we detected the same
trends reported for datasets I and II. For example, regarding
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Fig. 9. Comparison of MSI values illustrating the impact of replacing goethite
content by hematite without changing to total mass fraction of the iron oxides
(case 1). The MSI values were computed for each modified reflectance curve
(across selected visible (400–700 nm), NIR (700–1000 nm), and VNIR (400–
1000 nm) ranges), and considering the respective baseline curve associated with
a given dataset (Table III).

Fig. 10. Comparison of MSI values illustrating the impact of reducing the
total iron oxide content, without goethite, to the original (baseline) mass frac-
tion of hematite (case 2). The MSI values were computed for each modified
reflectance curve (across selected visible (400–700 nm), NIR (700–1000 nm),
and VNIR (400–1000 nm) ranges), and considering the respective baseline
curve associated with a given dataset (Table III).

datasets III and IV, which, like dataset II, had dominant mass
fractions initially assigned to goethite in the baseline case, one
can also observe a reflectance decrease in the visible region,
and an increase in NIR region when comparing the curves
obtained for case 2 with the curves obtained for the baseline
case. Moreover, these simulations considering datasets III and
IV further illustrate the spectral smoothing role of goethite in
the 600–800 nm region, which becomes more evident when
one compares the baseline case (with goethite and hematite)
with case 2 (without goethite, but with the same iron content
depicted in the baseline case).

The MSI values computed for case 1 (Fig. 9) indicate that
the impact of replacing goethite by hematite, without changing
the total mass fraction of these minerals (case 1), was substan-
tially larger for datasets II, III, and IV, in which lower initial
mass fractions were initially assigned to hematite (Table III). In
contrast, the lowest impact was observed for the curve obtained
using a modified version of dataset I, which had the largest ini-
tial mass fraction initially assigned to hematite in the baseline
case.

The MSI values computed for case 2 (Fig. 10) indicate that
the reduction of the total iron content to the initial hematite con-
tent resulted in a lower overall impact in comparison with the
MSI values for case 1 depicted in Fig. 9. Due to the dominant
role of hematite as the strongest absorber considered in our sim-
ulations (Figs. 2 and 3), a reduction of its content was expected

to lead to a reduction of its overall impact. We remark that the
replacement of goethite by hematite followed by the total iron
oxide content reduction is equivalent to substituting the parti-
cles of goethite in the mixed grains by hematite. Accordingly,
the smallest impact associated with the replacement of goethite
by hematite was observed for the modified dataset I (Fig. 10)
since it had the smallest and largest mass fractions initially
assigned to goethite and hematite, respectively, in the baseline
case (Table III). This, in turn, resulted in the smallest variation
of hematite content among all five modified datasets and, con-
sequently, in the smallest MSI values computed for the selected
spectral ranges.

Although the spectral properties of particulate materials
made up of minerals with different composition, size, and dis-
tribution can be associated with the distinct characteristics of
the spectral indices of its main absorbers, such as hematite
and goethite in the case of Martian iron-rich regolith, they
should not necessarily be expected to precisely match labora-
tory references for these absorbers in pure form [7]. Viewed
in this context, our investigation demonstrates that predictive
computer simulations capable of accounting for complex phe-
nomena through first principles modeling approaches can be
instrumental in the pursuit of a better understanding about
the spectral properties of these materials. The observations
derived from our computer experiments are consistent with
observations reported in the literature about the strong influ-
ence of hematite [1], [7] and the smoothing role of goethite [7],
[9] in the spectral signature of Martian iron-bearing terrains.
Hence, we are confident that the proposed simulation frame-
work can be effectively employed to assist future investiga-
tions involving the spectral properties of Martian sand-textured
terrains.

IV. CONCLUSION AND FUTURE WORK

We believe that the integration of remote sensing data with
predictive modeling will continue to play an important role
in investigations involving the spectral properties, mineralogy,
lithology, and environmental history of Martian landscapes.
The simulations reported in this work show that the proposed
simulation framework based on the SPLITS model has the
flexibility and predictive capabilities required to support such
investigations.

As stated by Bell and Ansty [7], the main characteristics of
early Martian landscapes may still be preserved in the present
regolith covering the planet’s surface. Accordingly, one of the
key challenges for the advancement of research on Martian
environmental history involves the establishment of diagnos-
tic spectral procedures for the identification of distinct surface
material constituents among several iron-bearing compounds
mixed in unknown proportions [7]. Furthermore, the occurrence
of these compounds is characterized by specific morphological
attributes that cannot be properly reproduced and studied under
traditional laboratory conditions. Hence, by providing reliable
insights about spectral trends associated with the presence of
iron oxides in Martian regolith, controlled computational exper-
iments can contribute for the development of such procedures
and, consequently, to the correct interpretation of geophysical
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clues leading to a more comprehensive understanding of the
origins of Martian landscapes.

As future work, we intend to employ the proposed frame-
work in the study of different hypotheses related to weathering
processes involved in the formation of Martian terrains, and in
the investigation of the interplay between light scattering phe-
nomena taking place at the ground and atmospheric levels. For
the latter, we may resort, e.g., to support data derived from
observations provided by the OMEGA (Observatoire pour la
Minéralogie, l’Eau, les Glaces et l’Activité) imaging spectrom-
eter on board Mars Express [11], [60], and multiangle obser-
vations acquired by the CRISM (Compact Reconnaissance
Imaging Spectrometer for Mars) instrument on board the Mars
Reconnaissance Orbiter [56], [57], [61]. We also intend to
extend our research to other planetary bodies, such as Venus
and Titan, as more supporting morphological and spectral data
becomes available.
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