
Extending the Educational Scope of a Particle-Based
Simulation Framework through Parallelization

T. Francis Chen and Gladimir V. G. Baranoski
Natural Phenomena Simulation Group,

School of Computer Science, University of Waterloo, Canada
t4chen@cs.uwaterloo.ca, gvgbaran@curumin.math.uwaterloo.ca

ABSTRACT

Particle systems have been incorporated into a wide vari-
ety of applications in both academia and industry. They can
be employed to investigate complex natural phenomena, il-
lustrate scientific concepts and generate special effects for
entertainment purposes. Recently, we implemented an ed-
ucational simulation framework based on particle systems
that can be used to perform interactive virtual experiments
involving complex physical laws. The positive feedback re-
ceived from a pilot deployment of this framework motivated
us to look for strategies to increase its scope. However,
more complex and engaging simulations require the use of
a larger number of geometric primitives (particles), which
results in higher computational costs. To mitigate these
costs, we resorted to the implementation of parallel tech-
niques through the use of the Message Passing Interface
(MPI) standard. In this paper, we describe these techniques
and discuss the performance gains resulting from their ap-
plication to the simulation algorithm that forms the core of
our framework. These results were obtained through prac-
tical test cases which are also described in detail in this
paper.

KEYWORDS: Education, particle system, simulation,
application, parallel processing.

1. INTRODUCTION

A particle system involves the generation and movement

of numerous elemental primitives [1]. The rules governing

their motion can be customized for a wide spectrum of ap-

plications in different areas. In fact, particle systems are

extensively employed not only in education [2, 3] and re-

search [4, 5], but also in the production of visual effects for

movies and games [1, 6].

Numerous parallel implementations of particle systems

have been presented in the literature [7, 8, 9, 10]. Addition-

ally, several parallel efficient algorithms have been specif-

ically developed to solve more general N -body problems.

Notable examples include the Barnes-Hut algorithm [11],

the fast multipole algorithm [12] and the parallel multipole

tree algorithm [13].

The work presented in this paper is aimed at educational

applications involving three dimensional physics simula-

tions. Such applications have been found to enhance learn-

ing by providing high levels of immersion [3]. They usu-

ally employ visualization tools to make the presentation

and discussion of physical phenomena more interesting

and engaging. Recently, we have developed a simula-

tion framework that uses OpenGL [14] graphics features

to teach children different scientific concepts. More specif-

ically, the effect of different environments on motion and

the theory behind anaglyphs and binocular vision [15] are

addressed. This framework was presented as a short inter-

active demo at a pilot educational event at the University of

Waterloo (Canada). Figure 1 presents a sample screenshot

of the running simulation meant to be viewed with red-blue

anaglyph glasses. The arcing lines represent the trajectories

of the spheres.

We plan to increase the educational scope and the effective-

ness of our framework in future events. These goals will

be achieved by depicting a wider variety of physical phe-

nomena and employing a larger number of particles in our

simulations. Since the corresponding computational costs

depend on the number of particles, it is necessary to ap-

ply a parallel strategy to avoid performance degradation

978-1-4244-6829-4/10/$26.00 ©2010 IEEE 115

Figure 1. A Screenshot of the Simulation Framework

and keep a high level of effectiveness. In this paper, we

present different schemes that can be used to achieve these

goals. These schemes, which were implemented using the

Message Passing Interface (MPI) standard [16], have been

applied to the simulation of different physical phenomena,

and their effects on the parallel run time, speedup and effi-

ciency of the simulations are quantitatively analyzed in this

work.

The remainder of the paper is organized as follows. Sec-

tion 2 presents key aspects of the simulation algorithm and

outlines the physical phenomena depicted in our educa-

tional framework. Section 3 describes the different par-

allelization schemes investigated in this work. The results

obtained from each of these schemes are discussed in Sec-

tion 4. Finally, Section 5 closes this paper with a summary

of our findings.

2. THE SIMULATION ALGORITHM

The simulation algorithm used in our educational frame-

work updates the state of every particle at evenly distributed

timesteps. The particles are represented by unit spheres

of equal mass, and the state of each particle is defined by

its position and velocity. Updates are based on Newtonian

equations. Specifically, the position is updated using

xi+1 = xi + viΔt, (1)

and the velocity is updated using

vi+1 = vi + aΔt, (2)

where xt and vt denote the position and velocity at

timestep t respectively, a is the acceleration imposed by

the simulation environment, which is outlined in Subsec-

tion 2.2, and Δt is the timestep. The actual positions of the

spheres are restricted within a bounding volume. The sim-

ulations are initiated with n spheres placed randomly and

uniformly throughout the bounding volume. The initial ve-

locity of all spheres is zero.

2.1. Collision Detection

A direct approach is used to detect collisions. At every

timestep, every sphere, si, has its position checked against

every other sphere, sj , j �= i. The state of si is adjusted if

the distance between si and sj is smaller than the sum of

their radii. This results in O(n2) operations, which corre-

spond to the main bottleneck of the simulation.

Note that adjustments cannot be applied as collisions are

detected. For example, let three spheres be denoted as s1,

s2 and s3. Now, assume s1 collides with s2 and s1 is ad-

justed. However, if s3 is also involved with a collision with

s1, then the original velocity from s1 is needed to adjust s3.

In other words, new velocities cannot be used for adjust-

ments at the current timestep. Instead, adjustments are ap-

plied to a copy of the current timestep’s spheres. The origi-

nals are discarded and replaced by the copies only when all

possible collisions have been checked.

2.2. Simulation Environment

Besides the collisions affecting the motion of the spheres,

the simulation environment dictates their overall behaviour.

Specifically, we implemented a bounding volume restrict-

ing the position of the spheres, and one of three environ-

mental contexts (two ways to model gravity and Brownian

motion) steer their movement.

The primary difference between the two gravity implemen-

tations is the direction in which they point: downwards or

towards the center of the simulation space. When gravity is

116

directed downwards, the simulation mimics balls bouncing

within a box. On the other hand, when gravity is directed

towards a point, the spheres may orbit around the center,

similar to a planet’s motion in a solar system.

When small particles are suspended in fluids, they present

undiminishing “jiggling,” which can be attributed to Brow-

nian Motion [17]. This phenomenon is most noticeable

when the particles are a few micrometers in diameter. In

our framework, this phenomenon is simulated by randomly

generating a small distance and direction for each sphere at

every timestep. The position of each sphere is then modi-

fied accordingly.

Figure 2 presents sample screenshots of the simulation

framework under the three implemented environmental

contexts outlined above. The lines near each sphere are

trajectories traced by the corresponding sphere.

When all the procedures mentioned in this section are in

place, Algorithm 1, presented as “Update,” is executed at

every timestep. This algorithm performs the following op-

erations: copying of spheres (lines 1 and 8), application

of particle system’s rules (lines 2 and 7) and collision de-

tection (lines 3 to 6). While the former two are O(n), the

latter is O(n2), which highlights the primary bottleneck of

this algorithm.

Algorithm 1 Update(Spheres S[1..n])

1: Temp = S
2: ApplyNewton(Temp)

3: for i = 1 → n do
4: for j = 1 → n do
5: if i �= j AND Collide(Temp[i], S[j]) then
6: Adjust(Temp[i])
7: ApplyEnv(Temp)

8: S = Temp

3. PARALLELIZATION SCHEMES

In this section, three primary types of parallelization

schemes are presented to distribute work across P proces-

sors. The first type divides the algorithm by spheres, and

the second divides by space. In the former each proces-

sor is responsible for a subset of all the spheres, while in

the latter, each processor is responsible for spheres within

a division of the total volume. The third type corresponds

to variations on the space division scheme. In these varia-

tions, the divisions are dynamically resized throughout the

course of the simulation.

3.1. Division by Spheres

Under this division scheme, processor p is responsible for

np ≈ n/P spheres. However, when using Algorithm 1 to

resolve collisions, each sphere needs to be checked against

all other spheres for collisions. Therefore, instead of loop-

ing for i from 1 to n in line 3 of Algorithm 1, i will loop

from 1 + αp to αp + np. In other words, processor p is re-

sponsible for updating spheres with index 1+αp to αp+np

inclusive. This reduces the amount of work per processor

to O(n2/P). Now, after every update, an all-to-all broad-

cast is required to update all processors with the updated

spheres. The complete process is executed by Algorithm 2,

which is presented as “DivisionBySpheres.”

Algorithm 2 DivisionBySpheres(Spheres S[1..n], αp, np)

1: Temp = S
2: ApplyNewton(Temp)

3: for i = 1 + αp → αp + np do
4: for j = 1 → n do
5: if i �= j AND Collide(Temp[i], S[j]) then
6: Adjust(Temp[i])
7: ApplyEnv(Temp)

8: S = Temp
9: AllToAllUpdate(S)

Figure 3 illustrates the update flow resulting from this di-

vision scheme with three processors. In the figure, each

column represents data of one processor, and each 1 × 3
box represents the states of all the spheres. Initially, all

processors have the same states for all spheres, denoted by

the top row of empty boxes. To update all spheres, each

processor will account for its own set of spheres: horizon-

tal pattern for the processor 1, vertical pattern for proces-

sor 2 and diagonal pattern for processor 3. Each processor

then broadcasts its own updates to all processors in order

to maintain consistency. A second update and broadcast

repeat this process, which is illustrated by the two lowest

rows of boxes in the figure.

3.2. Division by Space

In the second division scheme, each processor is responsi-

ble for only spheres whose center is within a specific di-

vision of the full bounding volume. These divisions are

evenly spaced along each of the principal axes. For exam-

ple, in a 30×30×30 volume divided into 3×2×1 divisions,

each division would be 10× 15× 30 in size.

A sphere in a division can only collide with another sphere

in the same or neighbouring divisions. Neighbour in this

context means to touch on a face, edge or corner. Spheres

117

(a) Gravity Down (b) Point Gravity (c) Brownian Motion

Figure 2. Implemented Environmental Contexts

Figure 3. Update Flow in the Sphere Division Scheme

118

that overlap division boundaries are shared by the corre-

sponding processors. That is, each processor obtains a

copy of the spheres. The collision adjustments for each

processor only need to account for its own spheres plus

the relevant shared spheres. Using Algorithm 1, the work

performed for collision detection and updates is O(np,t ·
(np,t + hp,t)), where np,t is the number of spheres within

the division of processor p at timestep t, and hp,t is the

number of spheres obtained by processor p at timestep t
from sharing. The number of spheres shared, hp,t, is usu-

ally numerically negligible compared to np,t. Hence, if

the spheres are evenly distributed amongst the processors,

then the work reduces to O(n2/P 2). After collision adjust-

ments are performed, each processor discards the shared

spheres originating from other processors. Spheres that

have moved outside of a processor’s division will need to

be transferred to the neighbours. That is, an originating

processor will lose its copy of the sphere. Spheres that

have moved inside from outside will need to be similarly

obtained. This process is executed by Algorithm 3, which

is presented as “DivideBySpace.”

Algorithm 3 DivideBySpace(Spheres S[1..np,t])

1: ShareSpheres(S, Neighbours)

2: Temp = S
3: ApplyNewton(Temp)

4: for i = 1 → np,t do
5: for j = 1 → np,t + hp,t do
6: if i �= j AND Collide(Temp[i], S[j]) then
7: Adjust(Temp[i])
8: ApplyEnv(Temp)

9: S = Temp
10: DiscardShared(S)

11: TransferAndObtainSpheres(S, Neighbours)

When considering sharing and transferring of spheres, one

division may be adjacent (neighbour) to a maximum of 26

other divisions. This is illustrated by the center partition

in a 3 × 3 × 3 arrangement. However, instead of commu-

nicating with a maximum of 26 processors, each processor

only needs to communicate with the six neighbours that are

face adjacent. We illustrate this with a two dimensional ex-

ample. In Figure 4, quadrant 4 has a circle (representing a

sphere) that needs to be shared with quadrant 1. However,

instead of communicating directly with quadrant 1, quad-

rant 4 will first share this sphere with quadrant 3 (upper hol-

low arrow) since quadrant 3 needs the circle as well. Now,

since the circle overlaps with the boundary between quad-

rant 3 and quadrant 1, quadrant 3 will now share it with

quadrant 1 (left solid arrow). Thus, communication with

a corner-adjacent quadrant can be replaced by two com-

munications with face adjacent quadrant. Additionally, all

communication in one direction can be performed by all

quadrants in parallel (2 types of arrows). The parallel hori-

zontal communication step will allow quadrant 2 to obtain

the circle as well.

Figure 4. Corner Sharing

Generalizing the two dimensional example to three dimen-

sions, only six parallel communication steps (two direc-

tions in each dimension) need to be performed over all

processors. For each communication step, two explicit

communications are required: one to state the number

of spheres to share, and one to actually share the data.

This adds up to a total of twelve explicit communications.

Transferring of spheres can be performed in a similar fash-

ion.

3.3. Dynamic Division by Space

The space division scheme presented in the previous sub-

section does not guarantee uniform load balance through-

out the course of the simulation. This is because the spheres

may clump in arbitrary divisions. Two variations of the

space division schemes were implemented to account for

this situation. Both are given the same initial divisions:

spaced evenly along the axes. At every 100 timesteps, the

divisions may be dynamically resized based on

• the extremal position of the spheres, or

• the spatial density of the spheres.

Within the context of Algorithm 3, these dynamic resizing

are performed after discarding shared spheres (line 10) and

before sphere transferring (line 11).

To perform resizing based on the extremal positions, ev-

ery processor obtains the maximum and minimum coordi-

nates of all spheres in each dimension. Processors then re-

size their divisions so that each division occupies an equal

volume based on these extremal positions. The most out-

side divisions may have their sizes increased to include the

neglected portions delimited by the simulation’s bounding

box.

119

(a) Original (b) Resized by Extremal Positions (c) Resized by Density

Figure 5. Resizing in Dynamic Space Division Scheme

To perform resizing based on the spatial density, every pro-

cessor obtains the coordinates of all spheres. The coordi-

nates are decoupled so that they can be sorted separately

for each dimension. This sorting is performed by each pro-

cessor. Base on these sortings, each processor then resizes

their own division so that each row and column of divisions

will be occupied by a similar number of spheres.

Two dimensional representations of these dynamic division

schemes are illustrated in Figure 5. The original setting

where the divisions are evenly spaced is presented in Fig-

ure 5(a). In Figure 5(b), the divisions are resized by equally

distributing the distances between the minimum and max-

imum coordinates in the horizontal and vertical directions.

These distances are represented by dh and dv respectively

in Figure 5(b). The divisions along the edges are extended

to include the full bounding box. In Figure 5(c), the divi-

sions are resized based on density. Note that each row and

column of divisions contains exactly 6 spheres.

4. RESULTS

This section presents the performance results across the

various division schemes. Performance analysis was per-

formed on a machine with eight Xeon processors at 1.40

GHz each and 3.7 Gb of RAM. The system was running

Ubuntu 6.06 on an i686 architecture. Programs were im-

plemented in C++ and compiled using g++ 4.0.3. For all

cases, 1000 timesteps were used, and the bounding volume

was set to 120× 120× 120.

4.1. Division by Spheres

When dividing the work for each processor by spheres, the

different environmental contexts do not drastically affect

the load balancing. Therefore, the focus of our analysis

is on the difference in performance for different problem

sizes. For all problem sizes, there is a near linear speedup

for two processors. However, as the number of processors

increases, the communication costs take over.

Figure 6 presents plots of the performance results. The to-

tal number of spheres is n. The run times for problem sizes

2000 and 3000 are divided by 4 and 9 respectively to nor-

malize against the problem size of 1000. In the speedup

plot, Figure 6(b), the linear curve is included as a reference.

For three processors, the speedup is drastically reduced due

to the cost in communicating with the additional processor.

This cost is large enough to offset the gains by using two

processors for the smallest problem size. For the largest

problem size, this communication cost is still comparable

to the computation cost, allowing for the highest efficiency

(speedup divided by number of processors), as seen in Fig-

ure 6(b).

The results also suggest that for 3000 spheres significant

communication costs occur from 5 processors onwards. In

the case of 2000 spheres, computation and communication

always balance out so that there is no large jump. How-

ever, there is a minor peak in run time at five processors as

shown in Figure 6(a). We remark that the larger problem

sizes have a higher efficiency until communication costs

dominate the run time.

4.2. Division by Space

When the work is divided by space, the environmental con-

text has a critical effect on the performance. The grid sizes

used in this analysis are presented in Table 1. Figure 7

presents plots of the performance results for a fixed prob-

lem size of 1000 without dynamic division schemes. The

120

1 2 3 4 5 6 7 8

15

20

25

30

35

40

Number of Processors

Ti
m

e
(s

)

n = 1000
n = 2000 (time divided by 4)
n = 3000 (time divided by 9)

(a) Parallel Run Time

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Number of Processors

S
pe

ed
up

n = 1000
n = 2000
n = 3000
Linear

(b) Speedup

1 2 3 4 5 6 7 8

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

n = 1000
n = 2000
n = 3000

(c) Efficiency

Figure 6. Performance Results: Division by Spheres

Table 1. Mapping between Number of Processors and Grid Sizes
Number of Processors 1 2 3 4 6 8

Visual Representation

Grid Size (x× y × z) 1× 1× 1 2× 1× 1 3× 1× 1 2× 2× 1 3× 2× 1 2× 2× 2

superlinear speedup is a result of not using an optimal se-

quential algorithm as a comparison. If the load is balanced,

the amount of total work performed is inversely propor-

tional to the square of number of processors. Additionally,

there is no need to perform all-to-all broadcasts in contrast

to previous scheme. This yields a drastically reduced paral-

lel run time. To account for this, the speedup plot presented

in Figure 7(b) includes a quadratic curve, and the efficiency

is measured by dividing the speedup by the square of the

number of processors. A linear curve is also included in

the speedup plot as a reference.

Brownian motion can be regarded as always optimally load

balanced since the spheres are initially evenly distributed

and there is no tendency for the spheres to cluster. This

results in the performance being improved consistently as

the number of processors is increased.

For downwards directed gravity, the spheres tend to settle

to the bottom of the bounding volume. Therefore, when

the volume is divided into only vertical columns, such as

the case of two and three processors, the efficiency is high.

However, when using four, six and eight processors, the

vertical division creates an uneven load balance by having

more spheres for the “bottom” processors, which results

in the large decrease in performance depicted in Figure 7.

Note that Brownian Motion has relatively low efficiency at

three processors. This may be attributed to a higher com-

munication overhead since there may be spheres that jump

back and forth at division boundaries.

For center directed gravity, the spheres tend to clump near

the center of the bounding volume. When using three pro-

cessors, most spheres will be reallocated to one processor

responsible for the center column. For six processors, a

similar behaviour occurs, i.e., all spheres relocate to the two

processors in the center column. Thus, the performance is

comparable between one and three, and two and six pro-

cessors. For one, two, four and eight processors, all divi-

sions share the center of the volume equally, resulting in

performance comparable to that of the optimally balanced

Brownian motion.

4.3. Dynamic Division by Space

The performance results from using dynamic division with

downwards directed gravity and center directed gravity are

presented in Figure 8. The results for Brownian motion

under non-dynamic space division, labeled as “Static BM,”

are included for comparison as an optimally load balanced

baseline. Efficiency is evaluated by dividing the speedup

by the square of the number of processors. In the speedup

plots, Figures 8(b) and 8(e), the linear and quadratic curves

are included as references.

121

1 2 3 4 5 6 7 8

5

10

15

20

25

30

35

40

Number of Processors

Ti
m

e
(s

)

Gravity (Downward)
Gravity (Center)
Brownian Motion

(a) Parallel Run Time

1 2 3 4 5 6 7 8

5

10

15

20

25

Number of Processors

S
pe

ed
up

Gravity (Downward)
Gravity (Center)
Brownian Motion
Linear
Quadratic

(b) Speedup

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

Gravity (Downward)
Gravity (Center)
Brownian Motion

(c) Efficiency

Figure 7. Performance Results: Division by Space

The performance results show that dynamic division by

extremal positions does not yield considerable difference

from using static divisions in terms of performance. This

is due to existence of spheres that are far removed from

the main clump of spheres. Therefore, this dynamic divi-

sion scheme does not distribute the work evenly. However,

when dividing by density, the performance drastically im-

proves and becomes comparable to the Brownian motion

baseline.

5. CONCLUSION

In this paper, we presented results from applying different

parallelization schemes to reduce the computational bot-

tleneck on a three dimensional simulation framework. To

increase its scope of applications, a larger number of ele-

ments were needed, and we applied parallel techniques to

improve performance accordingly.

Significant gains were obtained by incorporation of paral-

lelization techniques via MPI. Three main schemes were

investigated, namely, the distribution of work load by

spheres and by space (statically and dynamically). The

results of using the sphere division scheme show how

the broadcast cost can become a major contributing fac-

tor when too much data is distributed. It also illustrates the

importance of limiting communication overhead to main-

tain high efficiency in these applications. The largest gains

were achieved by using the dynamic space division scheme

based on sphere density. This scheme was able to consis-

tently improve performance for all variations of the simu-

lation environments employed in this study.

Future work will primarily involve the investigation of the

efficacy of these division schemes when applied to addi-

tional simulation environments. These will include mul-

tiple scattered points of attraction/repulsion and different

bounding volume shapes. The performance gains from us-

ing more processors or different parallel architectures will

also be investigated.

REFERENCES
[1] W. T. Reeves, “Particle systems—a technique for modeling

a class of fuzzy objects,” ACM Trans. Graph., vol. 2, no. 2,
pp. 91–108, 1983.

[2] T. F. Chen and G. V. G. Baranoski, “BSim: A system for
three-dimensional visualization of Brownian motion,” Uni-
versity of Waterloo, Tech. Rep. CS-2006-41, 2006.

[3] C. E. Wieman, W. K. Adams, and K. K. Perkins, “PhET:
Simulations that enhance learning,” Science, vol. 322, no.
5902, pp. 682–683, October 2008.

[4] P. Jetley, F. Gioachin, C. L. Mendes, L. V. Kalé, and
T. Quinn, “Massively parallel cosmological simulations
with ChaNGa.” in IPDPS. IEEE, 2008, pp. 1–12.

[5] K. McClements, M. Dieckmann, A. Ynnerman, S. Chap-
man, and R. Dendy, “Surfatron and stochastic acceleration
of electrons at supernova remnant shocks,” Physics Review
Letters, vol. 87, no. 25, pp. 255 002(1)–255 002(4), Decem-
ber 2001.

[6] J. van der Burg, “Building an advanced particle system,”
Game Developer, pp. 44–50, March 2000.

[7] S. Y. Belyaev and M. Plotnikov, “Object-oriented high-
performance particle systems,” A. I. Melker, Ed., vol. 5127,
no. 1. SPIE, 2003, pp. 272–278.

[8] F. Fleissner, P. Eberhard, C. Bischof, M. Bücker, P. Gibbon,
G. R. Joubert, B. Mohr, F. P. (eds, F. Fleissner, and P. Eber-
hard, “Load balanced parallel simulation of particle-fluid
dem-sph systems with moving boundaries,” in Proceedings
of Parallel Computing: Architectures, Algorithms and Ap-
plications, pp. 37–44.

[9] I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber,
E. M. Kotsalis, and P. Koumoutsakos, “PPM - a highly effi-
cient parallel particle-mesh library for the simulation of con-
tinuum systems,” Journal of Computational Physics, vol.
215, no. 2, pp. 566–588, July 2006.

122

1 2 3 4 5 6 7 8

5

10

15

20

25

30

35

40

Number of Processors

Ti
m

e
(s

)

Static
Extremal
Density
Static BM

(a) Parallel Run Time

1 2 3 4 5 6 7 8

5

10

15

20

25

Number of Processors

S
pe

ed
up

Static
Extremal
Density
Static BM
Linear
Quadratic

(b) Speedup

1 2 3 4 5 6 7 8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

Static
Extremal
Density
Static BM

(c) Efficiency

1 2 3 4 5 6 7 8

5

10

15

20

25

30

35

40

Number of Processors

Ti
m

e
(s

)

Static
Extremal
Density
Static BM

(d) Parallel Run Time

1 2 3 4 5 6 7 8

5

10

15

20

25

Number of Processors

S
pe

ed
up

Static
Extremal
Density
Static BM
Linear
Quadratic

(e) Speedup

1 2 3 4 5 6 7 8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Processors

E
ffi

ci
en

cy

Static
Extremal
Density
Static BM

(f) Efficiency

Figure 8. Performance Results: Dynamic Division by Space with
Gravity Down (top row) and Gravity Center (bottom row)

[10] M. S. Warren and J. K. Salmon, “A portable parallel particle
program,” Computer Physics Communications, vol. 87, pp.
266–290, 1995.

[11] J. Barnes and P. Hut, “A hierarchical O(N log N) force-
calculation algorithm,” Nature, vol. 324, no. 6096, pp. 446–
449, December 1986.

[12] L. F. Greengard, The rapid evaluation of potential fields in
particle systems. The MIT Press, 1987.

[13] J. Board, J.A., Z. Hakura, W. Elliott, D. Gray, W. Blanke,
and J. Leathrum, J.F., “Scalable implementations of
multipole-accelerated algorithms for molecular dynamics,”
may 1994, pp. 87 –94.

[14] Opengl, D. Shreiner, M. Woo, J. Neider, and T. Davis,
OPENGL(R) PROGRAMMING GUIDE, VERSION 2,
5th ed. Addison-Wesley Professional, August 2005.

[15] F. G. Waack, STEREO PHOTOGRAPHY. The Stereo-
scopic Society, 1985.

[16] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “High-
performance, portable implementation of the MPI Message
Passing Interface Standard,” Parallel Computing, vol. 22,
no. 6, pp. 789–828, 1996.

[17] M. J. Nye, MOLECULAR REALITY. American Elsevier
Publishing Company, Inc., 1972, pp. 126–136.

6. APPENDIX
In this appendix, we present the skeleton of the MPI code used to
implement the parallelization schemes discussed in this work.

Division by Spheres
int main(int argc,char **argv) {

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&numProc);

//...initialize simulation data here

//record responsibilities
int startIdx = ...;
int endIdx = ...;

//set buffers for communication
double* outbuf = ...;
double* inbuf = ...;

//for each frame
for(...) {

//do physics
updateBalls(...,startIdx,endIdx);

//prep outbound
for(int i = 0; i < mySize; i++) {

123

outbuf[i] = ...;
}

//communicate spheres
MPI_Allgather(outbuf,MPI_DOUBLE,

inbuf,MPI_DOUBLE, MPI_COMM_WORLD);

MPI_Barrier(MPI_COMM_WORLD);
}
MPI_Finalize();
return 0;

}

Division by Space
int main(int argc,char **argv) {

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD,&numProc);

//set 3d grid based
dims[0]=...;dims[1]=...;dims[2]=...;

//get id of neighbours
MPI_Cart_create

(MPI_COMM_WORLD,num_dimen,dims,...);
MPI_Comm_rank(cartcomm,&rank);
MPI_Cart_coords(cartcomm,rank,3,coords);
MPI_Cart_shift(cartcomm,0,1,

&nbrs[LEFT],&nbrs[RIGHT]);
MPI_Cart_shift(cartcomm,1,1,

&nbrs[DOWN],&nbrs[UP]);
MPI_Cart_shift(cartcomm,2,1,

&nbrs[FRONT],&nbrs[BACK]);

//set local bound box
Box myBox;
myBox.set(...);

//...initialize simulation data here

//for each frame
for(...) {

MPI_Barrier(MPI_COMM_WORLD);

//share spheres on edges
shareSpheresEdge(x-axis);
shareSpheresEdge(y-axis);
shareSpheresEdge(z-axis);

//do physics
updateBalls(...);
//discard extras
removeExtras(...);

//for dynamic scheme
//resize divisions every 100 frames
if(frameNum%100 == 0) {

if(resizeByDensity) {
//get number of spheres
// per processor
MPI_Allgather(&mySize,1,MPI_INT,

allSizes, 1,...);

//create and fill buffers with
// local x, y and z coords
double* myX = (double*)malloc(...);
double* myY...

//get all x, y and z coords
MPI_Allgatherv(myX,mySize,

MPI_DOUBLE,allX,allSizes,...);
MPI_Allgatherv(myY,...

//sort all coordinates
mySort(allX);
mySort(allY...

//set local bounding volume
myBox.set(...);

}

if(resizeByExtremal) {
//get global max/min
MPI_Allreduce(ballMaxLocal,

ballMaxGlobal,...);
MPI_Allreduce(ballMinLocal,

ballMinGlobal,...);

//set local bounding box
myBox.set...);

}
}
//transfer outside spheres
shareSpheresOutside(x-axis);
shareSpheresOutside(y-axis);
shareSpheresOutside(z-axis);

}
MPI_Finalize();
return 0;

}

124

	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

