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Abstract

Interactions between light and matter give rise to an abundance of natural phenomena.
Common examples include those between light and atmospheric ice crystals producing halos,
and between light and liquid water droplets producing rainbows. However, interesting effects
may also be observed when light impinges upon more dense materials such as snow. These
may be noted as changes to the appearance of the material resulting from variations in the
characteristics of the material itself. In some cases, these appearance changes may even mani-
fest themselves as dramatic changes in colour. In this thesis, we study snow as a material and
reproduce such phenomena by simulating light interactions with virtual snow samples.

Accordingly, this work presents a first-principles framework for simulating light transport
through snow. Data and information that describe the characteristics of snowpacks are obtained
from the literature and used to devise a digital representation of them suitable for predicatively
modelling light interactions with snow. The employed formulation allows for different virtual
snow samples to be investigated. Simulated rays of light are cast into a virtual snow sample,
and these rays are reflected and refracted until they exit from the surface of the sample, are
transmitted through the sample or are absorbed. The modelling results are recorded as spectral
response datasets for evaluation and analysis. These datasets are then compared with measured
data and observations reported in the literature in order to assess the simulations’ fidelity.

There are a number of study areas where such a framework can make a contribution. In this
thesis, we discuss such contributions to two fields of research, namely, computer graphics and
remote sensing. From a computer graphics perspective, the outputs of simulating light inter-
actions with snow may be used in natural phenomena visualizations employed for educational
and entertainment purposes. From a remote sensing perspective, the simulations may be used
to conduct in silico experiments that help to shed light on topics that are actively being studied.
Furthermore, the simulation outputs may also be used as data products in themselves, to make
comparisons against remotely acquired data and support other modelling initiatives.

The proposed framework presented in this thesis encapsulates a body of work that is ex-
pected to advance the state of the art of snow appearance modelling using a multi-faceted ap-
proach. The foundation of the framework is a novel radiative transfer model of light impinge-
ment on snow, whose predictive capabilities are extensively evaluated. Then, data products
produced by this framework are used to address open questions in the two fields of interest,
i.e., computer graphics and remote sensing. In particular, we describe a method to include the
complex, visual phenomena that are predicted by the radiative transfer model introduced here
into a traditional rendering pipeline. We also make use of the proposed framework to investi-
gate open problems (e.g., the absorption of solar radiation by snow and the effect that this has
on avalanche prediction) with potential interdisciplinary applications.
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Chapter 1

Introduction

The study of material appearance is an important area of scientific research. Such an endeavour
fosters better understanding of the interactions between light and the material under investiga-
tion. These light-material interactions affect the incoming light from the source so as to change
the reflected (or transmitted) light. It may change in colour (spectral distribution), or in direc-
tion (spatial distribution) or both. Research conducted into these changes (called responses) has
a broad variety of applications in several fields including computer graphics and the environ-
mental sciences. This thesis presents a study of light interactions with snow and attempts to
quantify the elicited responses governing the material’s appearance.

Snow is a granular material composed of ice crystals. These crystals, which are also referred
to as snow grains, are typically millimeter or submillimeter in size. They can be smooth and
round, faceted and crystalline, or may possess dendritic (branching) features [60]. The volume
fraction of space between the grains is known as the pore space. This space can be composed
of air and, to a lesser extent, liquid water. In addition, impurities may exist in a snow sample.

From a computer graphics perspective, the rendering of the material appearance changes
brought about by natural phenomena remains an active area of research. The capability of ac-
counting for the changes is important since they provide visual cues that significantly increase
the perception of realism of the computer renderings and animations [58, 116]. Furthermore, by
determining these features algorithmically rather than specifying them manually, the artists’
time may be dedicated to other aspects that cannot yet be determined automatically.

Outside of computer graphics, the study of light transport through snowpacks can be a
complex, yet important, problem. The high reflectance and insular properties of snow make
it a fundamental component of the climate system for the cryosphere [22]. Snow is also an
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important part of the hydrological cycle delivering potable water in snowmelt-dominated re-
gions [21]. Global surface temperature changes alter the seasonality of meltwater run off, thus
affecting the temporal availability of fresh water [21, 88, 136]. In addition to environmental
factors, modelling the electromagnetic (EM) (i.e., light) interactions with snow has pragmatic
applications such as determining snow’s effect on sensitive equipment [226]. A detailed under-
standing of the light interactions with a snowpack is required in order to gain valuable insights
into these areas.

In this work, we employ an in silico (computational) approach to compute the appearance
characteristics of snow. We aim to simulate the interactions between the impinging light with
snow so that the resulting responses may be used in a predictive manner. The assessment of the
predictiveness is rooted in fidelity [76]. Although there may be a difference of opinion about
the exact definition of fidelity, the basic connotation is clear. In essence, fidelity is “the degree
to which a model or simulation reproduces the state and behaviour of a real world object or the
perception of a real world object” [78]. Therefore, we evaluate the predictiveness of our model
against real world data obtained from the literature.

Although commonly thought of as being simply white, the reflective properties of snow
undergo a myriad changes that depend upon the properties of the snowpack. For example, even
a small amount of impurities may have a dramatic effect on the light that is reflected [232]. In
addition to the reflected light, the material properties of snow also affect the quality of the light
that has permeated through a mass of the material. In particular, the bluish appearance that can
be observed when light is transmitted through snow is arguably among the most fascinating of
such changes. In concise terms, it results from the wavelength-dependent attenuation1 of the
transmitted light by the ice crystals that form this granular material [19, 27, 28]. Despite the
existing knowledge about its eliciting processes, however, its predictive depiction in computer
generated images remains elusive.

The predictive reproduction of this distinctive display of natural phenomena requires careful
simulations of the underlying light attenuation processes. These simulations, in turn, rely on
the use of detailed light transport algorithms controlled by the wavelength-dependent optical
properties of snow. We note that academically and commercially available image synthesis
pipelines often adopt simplifying assumptions about these properties, notably with respect to
fundamental materials like water and ice. These simplifications include, for instance, using
a constant value for the index of refraction across all wavelengths in the visible portion of
the EM spectrum, and ignoring absorption effects in this spectral domain. Although these
simplifications can reduce rendering costs, they hinder the predictive rendering of material
appearance changes with a markedly noticeable wavelength dependency.

1Attenuation is the combined effect of absorption and scattering of light [171].
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As we shall discuss later in this work, employing a full light transport model may be un-
suitable for use on-the-fly during rendering applications demanding high interactivity rates. To
overcome these constraints, we will present a practical method for the predictive rendering of
the appearance of snow that is based on the effective use of snow reflectance and transmittance
data. It takes into account variations not only in light incidence, but also in the physical and
morphological characteristics of snow since these factors can significantly affect the material’s
appearance, particularly within the visible spectral domain [184].

With respect to the environmental sciences, in situ measurements of light interactions with
snow are costly and not without issues [117]. Furthermore, inaccessible or inhospitable regions
may require regular measurements via remote sensing techniques, whereby aircraft or satellite
imagery is used to monitor snow quantities. A detailed knowledge of how light interacts with
snow grains is essential to facilitate the interpretation of the resulting remotely acquired data.
Furthermore, although material appearance attributes may be measured in field and labora-
tory studies, the simulation of light interaction with materials can compliment these empirical
studies. Consequently, it may serve to advance the state of the art more rapidly [32], e.g., by
elucidating the effect of sample characterization [217].

To this end, the effects of the various characteristics of deposited snow on its spectral re-
sponses can be effectively studied using an in silico investigation approach [4, 111, 172, 239].
Such an approach may aid the analysis of the interactions between EM radiation and water-ice
grains. It can also accelerate the understanding of the relationships between the various snow
properties and the response values since each parameter that represents a characterization trait
can be varied individually. By comparison, in situ (field) experiments may be subject to multiple
simultaneous parameter changes due to environmental factors. Similarly, manufacturing arti-
ficial snow grains is time consuming and costly, and precise traits are still subject to temporal
metamorphism [41, 43]. In silico experiments can also be employed to provide a complementary
data source for testing analytic models by providing data with adequate angular sampling that
may not otherwise be readily available [49].

In this thesis, we present a new first-principles simulation framework that may be effec-
tively employed for those purposes. First-principles approaches have been extensively used in
different scientific fields [51]. In the context of our research, we are particularly interested in
their use in material appearance modelling. Accordingly, we consider the term first-principles
as referring to simulating the appearance of a material by explicitly accounting for how its fun-
damental components interact with light rather than relying on aggregated representations of
such interactions.

The light transport model for snow, the core component of the proposed framework, is
extensively evaluated both quantitatively by making direct comparisons to measured data ob-
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tained from the literature, and qualitatively by comparing predictions made by the model against
trends that have been documented [5, 28, 53, 54, 74, 95, 144, 157, 184, 228]. We endeavour to
show the value of such an effort by applying it to both computer graphics and interdisciplinary
studies.

1.1 Overview of Contributions

In this thesis, we present a novel framework for simulating light interactions with snow. One
of the contributions of this thesis is the development of a non-deterministic model which we
call SPLITSnow (SPectral LIght T ransport in Snow). It forms the foundation of this conceptual
framework [219]. Data inputs to this light interaction model are based on snow characterization
data as provided in the literature [29, 60]. These data are used to guide the specification of the
set of modelled virtual snow samples. A specific virtual snow sample is specified by selecting
a set of characterization values within the physically valid ranges for natural snow. For such a
virtual snow sample, geometric optics (light rays) are intersected with the material and response
data are collected.

A first-principles approach is taken in the design of the model. Given the material char-
acterization inputs, the model applies fundamental optical theory to compute the path that a
light ray takes through a snowpack. Repeated trials are employed to determine the spectral
and/or spatial distributions, i.e., the spectral and/or spatial responses. These repeated trials are
the expression of a Monte Carlo integration [87].

As stated above, the input characterization data were selected based on reported snow char-
acteristics found in the literature. These include commonly reported data such as grain size2

and snow depth, but also account for other snowpack features such as water content and grain
shape. Water content is also accounted for in the pore space that exists between the snow
grains. However, many natural snow samples recorded in the field contain a mixture of snow
grain types, i.e., they are heterogeneous in nature. Consequently, a mixture of grain types may
be specified as inputs to the model. Furthermore, snowpacks tend to accumulate over a number
of snowfall events. Therefore, multiple layers may be specified as inputs to SPLITSnow. Lastly,
impurities affecting the light transport may also be added to the snow sample.

The outputs of the SPLITSnow model are appearance attribute data. These data may be used
to make meaningful contributions to the field of computer graphics. More specifically, one of

2Note that we use both the terms “grain” and “particle” to refer to snow grains. When discussing snow charac-
terization we prefer to use the term grain to be consistent with the snow science literature. However, we sometimes
use the more general term particle when discussing background topics in Chapter 2 and other materials.
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the focal points of computer graphics research has been the predictive modelling of material
appearance. Although snow is an ubiquitous material, relatively little attention has been di-
rected toward predictively rendering its appearance by the computer graphics community. This
may be due to the challenging nature of the associated light attenuation phenomena and the
common assumption that snowpacks are achromatic. As another contribution of this thesis, we
show that snow exhibits characteristic colour variations under common lighting configurations
and provide examples of how these variations may be predictively reproduced in a traditional
computer graphics rendering pipeline [218].

The outputted datasets generated by SPLITSnow may also be valuable in fields other than
computer graphics. For instance, they may act as a complementary data source to be used for
testing analytic models by providing data that is otherwise costly to obtain or unavailable as in
the case of Ding et al. [49]. Furthermore, the SPLITSnow model may be used to conduct in silico
experiments for situations where results from field studies have proven to be elusive [18]. As a
further contribution, we provide example scientific applications [216, 217] which are discussed
in Appendices E and F. For such applications, the outputs of the SPLITSnow model may be
treated as the computed results determined by mathematical experimentation [87].

In addition to the modelling of light transport through snow that is discussed in this thesis,
related investigations involving other types of particulate material such as sand [7, 9, 11, 10, 12]
and Martian regolith [8, 13], were also conducted. As the contributions of these investigations
are ancillary to the topic of this thesis, they will not be discussed further and the reader is
referred to the publications cited in this paragraph for more details.

In this section, we have provided a brief summary of the contributions of this thesis. Pri-
marily, we present a novel framework for simulating light interactions with snow along with
a method to integrate the outputs of simulation into a traditional rendering pipeline for com-
putationally generating images. We also present example applications whereby such a model
may be employed to solve problems in the natural sciences. We now conclude this section
with a brief comment about what the proposed model is not. SPLITSnow is a local illumina-
tion model [198]. As such, macroscopic features are not modelled. As it will be discussed in
Chapter 4, individual grains are modelled for the purpose of computing appearance attributes
(which are discussed in Section 2.2). These grains are only ephemeral and are not an output of
the system, nor stored explicitly. Thus, large features such as the shapes formed by wind-blown
snow, known as sastrugi [95], are not represented. SPLITSnow is not a snow deposition model.
In other words, it does not model the placement of snow in a scene, nor does it modify or affect
scene geometry, whether it represents snow or not. As we will discuss in Chapter 5, it can be
used to compute the colour of snow, given the environmental conditions modelled by other
means, when it is associated with existing geometric objects in a computer rendering.
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1.2 Document Organization

The following chapters present the proposed framework for conducting in silico experiments,
i.e. experiments conducted via computer simulation, of light interactions with snow. The sup-
porting tiers of the framework provide data inputs and parameter specifications that are used to
guide the development and implementation of the proposed model. More specifically, the model
employs geometric optics (sometimes called ray optics) across a band of the EM spectrum that
includes not only the visible light spectrum, but also wavelengths in the ultraviolet (UV) and
the infrared (IR) domains. This framework also describes the data sources and methodologies
employed to evaluate the model’s predictions which may also influence the design. The out-
puts of simulation are data products, themselves, that the framework employs for a variety of
purposes.

Chapter 2 provides an overview of the relevant background material. Chapter 3 presents a
summary of works related to this thesis. Chapter 4 describes the formulation of the SPLITSnow
model in detail. Chapter 5 describes how to integrate the datasets produced by SPLITSnow into
a traditional rendering pipeline. In Chapter 6, we discuss the various methodologies used to
evaluate the predictions of the model and assess the fidelity of colours produced when used
in computer renderings. Chapters 7–9 present the results of the evaluation and provide a dis-
cussion of these results. More specifically, Chapter 7 focuses on spectral and spatial distribu-
tion results quantified in radiometric terms (e.g., reflectance, transmittance and bidirectional
surface-scattering distribution function (BSSDF) [154]), while Chapter 8 presents the results of
our data analysis and Chapter 9 showcases the use of the proposed framework in realistic image
synthesis. Finally, in Chapter 10, we provide an outline of future work along with concluding
remarks.

Six appendices are provided at the end of the thesis. Appendix A provides the geometric
optics formulation employed in this work. Appendix B discusses some of the technical details
related to a computation pertinent to Chapter 4. Appendix C provides a concise description of
how water content is represented within a snow sample, and discusses how to convert from one
method of water content specification to another. In addition, Appendix C also discusses “wet”
vs. “dry” densities, and provides a procedure to convert from one to the other. Appendix D
presents a brief explanation of how measured snow characterization data are interpreted as
input to the proposed model. Appendix E outlines an example application whereby data out-
putted from the SPLITSnow model were employed to analyze snow conditions that could lead
to slab avalanche events. The last appendix, Appendix F, discusses a property of snowpacks
that pertains to reflectance measurements used to estimate water content contained within the
snowpack.
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Chapter 2

Physical Background

In this chapter, we provide a concise overview of the fundamental concepts that are relevant
for this thesis. In Section 2.1, we briefly describe the physical nature of light. We also provide
a few details regarding the interaction of light with materials and the source of colour. In
Section 2.2, we describe how appearance is measured as well as the various aspects affecting its
measurement. In Section 2.3, we briefly discuss Monte Carlo methods [87], and how numerical
integration may be accomplished stochastically. Finally, in Section 2.4, we provide an overview
of computer graphics rendering concepts used in image synthesis. Many different approaches
of image synthesis are extant in the field of computer graphics. To this end, Section 2.4 will only
focus on the techniques employed in this work, and will not cover other rendering paradigms
such as real-time rendering which is discussed elsewhere [113, 196].

2.1 Electromagnetic Radiation and Material Interactions

In this section, we concisely introduce the various processes that have an effect on light trans-
port simulations and image synthesis. Much of the material can be found in texts on optics such
as that of Pedrotti and Pedrotti [167] and Born and Wolf [31].

2.1.1 The Wave-Particle Duality of Light

At times throughout scientific history, light has been considered to be either a wave or a particle.
However, in the previous century it became apparent that light has properties of both waves
and particles. This has come to be known as the wave-particle duality [167]. The discovery
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Figure 2.1: A mechanical wave propagates through matter. The direction of energy flow is along
the x-axis, and the displacement of material is along the y-axis.

Figure 2.2: An electromagnetic (EM) wave propagates through the EM field. The direction of
energy flow is along the x-axis and the oscillations of the electric and magnetic fields are along
the y- and z-axes respectively. Based on the diagram provided by Pedrotti and Pedrotti [167].

and mathematical theory that came to describe light is now known as quantum electrodynam-
ics [59]. The theory also incorporated magnetism, yielding our modern understanding of light
as electromagnetic (EM) radiation [167].

A mechanical wave radiates energy through matter. The wavelength of such a wave is the
distance between two consecutive peaks, which is depicted in Figure 2.1. In this figure, the x-
axis represents the direction travelled by the wave and the y-axis represents the displacement
of the matter. Correspondingly, Figure 2.2 depicts an EM wave. In this figure, the x-axis still
represents the direction of radiant energy flow. However, the y-axis represents oscillations of an
electric field and the z-axis represents oscillations of the magnetic field. Different wavelengths,
λ, of EM radiation represent different quantities of energy.
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Figure 2.3: The EM spectrum. Short wavelengths (m) are depicted on the left, while long wave-
lengths are presented on the right. Frequency (Hz) is inversely proportional to wavelength,
with high frequencies on the left and low frequencies on the right. Based on the diagram pro-
vided by Pedrotti and Pedrotti [167].

The complete EM spectrum (Figure 2.3) is quite large and includes bands such as X-rays
and radio waves. However, only a small fraction of the spectrum is visible to the human eye,
which only responds to EM stimulus whose wavelengths are in the range of 380 nm (3.8 ×
10−7 m) through 780 nm (7.8× 10−7m) [72]. However, it is most sensitive in the range of 400–
700 nmwith negligible response to stimuli outside of these values [171]. Surrounding the visible
portion of the EM spectrum are other bands. The bands containing the shortest wavelengths
are associated with high-energy. These include gamma rays and X-rays. For comparison, X-
rays have a wavelength roughly equivalent in size to a water molecule. Bands of EM radiation
containing wavelengths that are longer than those in the visible spectrum include microwaves,
which can be the size of a small ball, through radio waves which can have wavelengths as long
as a football field.

It is interesting to note that not all species of life experience the same spectral responses
to light as humans do. For example, some species of butterfly reflect light in the ultraviolet
(UV) range very brightly, and have eyes that are sensitive to this part of the EM spectrum [69].
Furthermore, UV light also plays a role in pollination by bees and hummingbirds [48].

2.1.2 Radiometric Terms

In this section, we introduce the radiometric terms used to describe the interaction between EM
radiation and materials. These terms describe both the measurement of light integrated over a
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set of wavelengths and those measurements evaluated at a particular wavelength, λ [72]. For
brevity, we will not write these terms as a function of λ. Furthermore, we omit the adjective
“spectral” from the definitions.

Radiant energy,Q, is a fundamental quantity representing the energy in a collection of rays
and has units in joules (J). However, the focus of this work involves quantities of energy flow,
since we are concerned with the amount of light striking a surface over a period of time. More
specifically, it is assumed that a steady rate of energy flow is hitting the surface of a material.
This energy per unit time is radiant power (flux) and it is denoted by Φ, which is measured in
watts (W or J s−1) [198].

In practice, an illumination source has a finite area. Thus, at the point of illumination,
the incident light has a radiant power that impinges from a particular direction with its area
of illumination defined by a solid angle.1 The radiant power per unit solid angle for a given
direction is called the radiant intensity and denoted by I and has units of Wsr−1. Expressed in
terms of radiant power and solid angle, the radiant intensity is given by I = dΦ/ dω, where ω
is the solid angle [198].

The last radiometric term to define in this section is radiance. Radiance is the reflected
quantity that more closely approximates the colour of the surface [198]. It is independent of
surface area, the size of the object being inspected and the distance to the observer, and it
provides an indication of surface brightness. Radiance may be defined equivalently in terms of
the radiant power as:

Lr =
d2Φ

dω dA cos θ
, (2.1)

where dω is the differential solid angle of the observation, dA is the differential area surround-
ing the point of reflection on the surface material and θ is the angle between the normal to the
surface the direction of the observer. Equivalently, radiance may be defined in terms of radiant
intensity as:

Lr =
dI

dA cos θ
. (2.2)

2.1.3 The Scattering of Light by Materials

This thesis discusses the interaction of light with materials — in particular the interaction of
light with snow. Snow is generally considered to be white in appearance, although other colours

1A solid angle is the three dimensional (3D) analog to radians. Whereas radians are represented by the arc
length of a unit circle, steradians are represented by an area of the unit sphere. The units are expressed in steradians
(sr).
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Figure 2.4: Single scattering of light by a particle. Incident light interacts with a single particle
and it is subsequently scattered. Based on the diagram provided by Bohren and Huffman [30].

can be manifested [27]. However, when examined with magnification, each crystal (or grain) of
snow is generally transparent. What then, is the source of the white colour? The simple answer
to this question is the random scattering of the incident light by a multitude of snow grains,
which are commonly referred to as particles in a more general sense. Moreover, the scattering
of light may be governed by different processes, which give rise to a variety of phenomena.

For instance, when a material’s constituent particles are small compared to the wavelength
of EM radiation, the scattering is proportional to λ−4. This type of scattering is known as
Rayleigh scattering [167]. It is responsible for the blue colour of the daytime sky. However,
when the size of the particles are larger, i.e., their sizes are approaching the wavelength of the
incident radiation, Rayleigh scattering no longer effectively models the light-particle interac-
tions. For such cases Mie scattering can be used to model the interactions [31]. Although the
theory behind Mie scattering is based on spherical particles, it also correctly describes many
small particle effects for nonspherical particles [167]. An example of a commonly observed
Mie scattering effect is the white colour associated with clouds [31]. This thesis focuses on the
scattering exhibited by still larger particles. Namely, those that are significantly larger than the
wavelengths used to illuminate the sample. An example of a phenomenon that is produced by
the scattering of light through relatively large particles is the scattering of light by atmospheric
water droplets that produces a rainbow [138].

Many studies of the scattering of relatively large particles choose to focus their efforts on
the scattering of light by a single particle as depicted in Figure 2.4. In this figure, incident light
passes through an homogeneous medium, then strikes and interacts with a particle and it is
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subsequently scattered. For a beam of light interacting with the particle, one can expect that
some (possibly zero) fraction of the light will be reflected off the surface of the particle, while
another fraction will be refracted into the particle. Similarly, in the case where light is trans-
mitted into the particle, it may reflect back into the particle at the particle-medium boundary
after being transmitted through the particle, or refract back out of the particle. In addition,
some fraction of the light may be absorbed. Studies of so called single scattering often focus on
materials whose particles have regular shape and combine the results of single scattering with
analytical theory (e.g., [79, 243]). The resulting angular distribution of light scattered from a
single particle is commonly quantified as its phase function.2 The phase function is typically
normalized so that the sum total of all contributions in all directions in a sphere surrounding
the particle is one [30].

Studying light interactions with a material often requires considering not just a single parti-
cle, but a collection of particles [30]. As light traverses the medium (or media), it interacts with
several particles before ultimately being reflected by the material, transmitted through the ma-
terial or absorbed. This is known as multiple scattering. This thesis takes a multiple scattering
approach to studying light interactions with snow.

2.1.4 Geometric Optics and the Complex Index of Refraction

The wave nature of light allows for phenomena that depend upon interference patterns that
arise from the crests and troughs of the interacting waves. Such phenomena are known as
interference phenomena [31]. The wave nature of light is also responsible for diffraction,3 where
a beam of light is spread out after passing through a narrow aperture [167]. However, there is a
wide range of phenomena that are not suitably handled by wave optics. For such phenomena,
visible light and other parts of the EM spectrum can be treated as rays, i.e., geometric optics
can be employed in their description and prediction.

As an example, consider Figure 2.5. The incident light direction is measured away from the
normal to the surface and is given by θi, while θr represents the angle at which light is reflected
from the surface. For a perfectly reflecting mirror surface, θi equals θr, and the direction of the
reflected light can be determined geometrically, while the quantity of reflected light equals the
quantity of incident light.

Most objects are not perfect reflectors and some of the light is transmitted through the
surface and into the material. The angle of the transmitted light is represented by θt, and it can

2We remark that phase functions are sometimes used to represent the combined effects of multiple scattering.
For more information about this topic, the interested reader is referred to a related work [15].

3Diffraction effects are due to the bending of light waves around the edges of obstructions [167].
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Figure 2.5: Geometrically reflected and transmitted rays of light. Based on the diagram provided
by Pedrotti and Pedrotti [167].

be obtained through Snell’s law [167]:
sin θi
sin θt

=
nt

ni

, (2.3)

where ni and nt are usually given as constant, real-valued indices of refraction. The index of
refraction of a material is the ratio of the speed of light in a vacuum to the speed of light through
the material.

For many applications, employing constant, real-valued numbers for ni and nt and Equa-
tion 2.3 is sufficient. However, for many applications, it is necessary to utilize an index of
refraction that varies with the wavelength of illumination. Furthermore, the index of refraction
may also specify a complex component, which is also a function of wavelength. Various forms
of the complex index of refraction have been used in the literature. In this thesis, we choose to
adopt the following form:

η = n+ ik, (2.4)
where the index of refraction is given by η,n is the real part of the index of refraction and k is the
complex part of the index of refraction. Both n and k are functions of the wavelength of light,
i.e., n(λ) and k(λ). Again, for brevity, we will not explicitly write each symbol as a function
of λ. Various names have been given to k in the literature. We will refer to k as the complex
part of the index of refraction. For consistency with the related literature, we sometimes use
the term extinction coefficient to refer to k. We note that this quantity is associated with the
amount of light that may be absorbed by a given material [167].

We note that the wavelength dependency of this quantity is often overlooked either due
to the absence of data or for simplification purposes. As stated above, specifying n as a real-
valued constant is a simplification that is useful for many purposes, but it is not suitable to
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predictively simulate phenomena such as rainbows. In order for a water droplet to split light
from an incident light source into its constituent colours, an optical phenomena commonly
referred to as dispersion [31], the wavelength dependency of n must be accounted for.

The version of Snell’s law given in Equation 2.3 is often employed for dielectrics (poor con-
ductors of electricity) such as water and ice. The more general form of Equation 2.3 that takes
into account the complex index of refraction is given in Appendix A. Furthermore, when light
is incident on a refractive surface, some fraction of it will be reflected, while some of it will be
transmitted. The Fresnel equations [167] (also discussed in Appendix A) are used to determine
this fraction. Note that the Fresnel equations also use the complex index of refraction in their
formulation.

2.2 The Measurement of Appearance

In this section, we outline the measurement of appearance [97] concepts pertaining to this work.
The appearance of a given material is determined by the spectral (wavelength dependent) and
spatial distributions of light propagated by it. While the former component is associated with
appearance attributes such as colour, the latter is associated with attributes such as glossiness
and translucency.

These appearance components are determined by the processes affecting the distributions
of the light impinging upon the material. The light, itself, is EM energy that first radiates from a
source and then interacts with a material, where some components of the EM radiation emerge
and continue to radiate. The wavelength, λ, of this radiative energy is the value that distin-
guishes one type of radiation from another. In particular, the parameter λ provides the spectral
distribution, or spectrum, of EM radiation.

Whereas the spectral distribution concerns the distribution of the wavelengths, the spatial
distribution is a quantification of the geometric distribution of the response. Figure 2.6 demon-
strates the spatial attributes associated with reflection. In Figure 2.6(a), the majority of the light
is reflected in the forward direction. Materials with this type of spatial response for reflection
tend to look shiny, like a polished apple. In Figure 2.6(b), light is evenly reflected in all direc-
tions. This type of spatial reflection has a matte finish, and it is often referred to as diffuse or
Lambertian reflection [97]. It is important to note here that the spatial distribution of reflected
light may also vary with wavelength. Thus, an object may appear shiny when it propagates
light at a certain wavelength, but diffuse when it propagates light at another wavelength.

In an in situ study concerning directionally or spatially varying reflectances, the results are
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(a) (b)

Figure 2.6: Two examples demonstrating spatially different reflective behaviours. In (a), there
is a strong forward component, giving the material a glossy look. In (b), the reflected light is
equally distributed in all directions, giving the surface a dull finish.

often described as being goniometric4 in nature. The tool used to measure these directional
(angular) variations is a type of goniometer [124]. For experiments involving EM radiation of
particular wavelengths of illumination the apparatus is known as a spectro-goniophotometer.

2.2.1 Modes of Illumination and Directional Measurement

In this section, we discuss the different types or modes of illumination along with the corre-
sponding modes of measurement. In addition, we present additional radiometric terms em-
ployed in this thesis. It has been noted that there has been a lack of consistency in radiometric
terminology in the literature [192]. For this reason, this thesis will follow the standardization
set out previously by other researchers, namely Nicodemus et al. [154] and Schaepman-Strub
et al. [192].

In the most general sense, the bidirectional surface-scattering distribution function (BSSDF)
encapsulates the reflectance (and transmittance) of a material. For each wavelength of illumi-
nation, the proportion of reflected (or transmitted) radiance to incident flux (power) is specified
for each incoming and outgoing direction and position of exitance of the material. If the po-
sitional dependency is assumed to be negligible, one can employ the bidirectional scattering
distribution function (BSDF) [23]. If only the reflected portion of the BSDF is of concern, it can
be expressed in terms of the bidirectional reflectance distribution function (BRDF). Similarly
the transmitted portion of the BSDF can be expressed in terms of the bidirectional transmit-
tance distribution function (BTDF). The BRDF is thus defined as the ratio of reflected radiance

4Goniometry is the measure of angles or data associated with angles [124].

15



Detector

Source

θ
i

φ
i

θ
r

φ
r

Figure 2.7: Definition of angular measure for incident, i, and reflected, r, directions. The polar
angle, θ, increases away from the normal to the surface, while the relative azimuth angle, ϕ,
increases counter-clockwise in the plane of the sample.

to the incident irradiance and has units of sr−1 (i.e., per steradian or per unit solid angle). Since
transmittance is usually handled in a similar manner to reflectance, in the following definitions
we concentrate on reflectance and implicitly include transmittance by analogy.

Figure 2.7 provides a reference diagram for light incidence and collection geometry taken
into account the definitions provided in this section. The polar angle is measured away from the
normal to the surface and it is denoted by θ. The symbol ϕ is used to represent the azimuthal
angle, which increases counter-clockwise in the plane of the sample. The subscripts i and r
indicate the incident and reflected directions, respectively.

There are three modes of EM radiation to consider when measuring the reflectance of a ma-
terial that have previously been defined [154]. They are directional, conical and hemispherical.
Each mode must be considered for both incoming and reflected components, yielding nine com-
binations. (See Figure 2.8, where four of the nine combinations are depicted.) For instance, the
function relating the incident light from one direction of its contribution to the reflected light in
another direction is directional-directional, or more concisely called bidirectional. This function
is, in fact, the BRDF. The BRDF is defined as the ratio of reflected radiance, Lr(θi, ϕi; θr, ϕr;λ),
to the incident irradiance, Ei(θi, ϕi;λ) for each incident and exitant direction. As a function it
is typically expressed as:

fr(θi, ϕi; θr, ϕr;λ) =
dLr(θi, ϕi; θr, ϕr;λ)

dEi(θi, ϕi;λ)
, (2.5)

where (θ, ϕ) pairs represent the directions in spherical coordinates.
As noted in the literature [154], the BRDF is not directly measurable in the field or laboratory

since light emitters and detectors utilized in experimental apparatus have a finite area and thus,
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Figure 2.8: Diagrams illustrating four types of reflectance [154]: (a) directional-conical;
(b) directional-hemispherical; (c) biconical; and (d) conical-hemispherical.

are conical by design. (See Figure 2.8(c).) More specifically, a source of illumination has a
finite area by construction, which is directed at the sample to be measured, yielding a cone as
observed from a point on the surface. Similarly, a detector has a surface area. Thus, a laboratory
device used to measure reflectance is biconical. Experimental methodologies may employ small
sensors to minimize the impact of a biconical setup [35, 54] or account for it by normalizing the
measured values using the solid angle of the detector.

This method of measurement usually results in reflectance factor data [192]. For each geo-
metric configuration, this is a ratio of radiant flux reflected by a sample to that reflected by an
ideal, diffuse (Lambertian), standard surface. The biconical reflectance factor is given by:

R(θi, ϕi, ωi; θr, ϕr) =
Φr(θi, ϕi, ωi; θr, ϕr)

Φpd(θi, ϕi, ωi; θr, ϕr)
(2.6)

where Φr represents the amount of light reflected from the material, and Φpd represents the
amount of light reflected by a perfectly diffuse reflector [97].

Simulations, however, do not have all the same limitations of physical apparatus. With a
simulation, it is possible to have directional incidence since the irradiance (the incident radiant
flux (power) per unit area [154]) is specified using only two values: the point on the sam-
ple and the direction from the source of illumination. Hence, simulations are not restricted
to light sources with a finite area. This is depicted in Figure 2.8(a). Thus, an in silico experi-
mental methodology may employ a directional-conical mode [124]. For such cases, a similar
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normalization (i.e., normalization by the solid angle of the detector) allows for making a direct
comparison with measured data.

Directional-hemispherical reflectance is a special case of the conical reflectance where the
entire upper hemisphere is used as a single detector. (See Figure 2.8(b).) For this case, the sum
total contribution in all directions above the surface gives total hemispherical reflectance. For
a simulation the directional-hemispherical reflectance is computed as:

ρ(θi, ϕi;λ) =
Φr(θi, ϕi;λ)

Φi(θi, ϕi;λ)
, (2.7)

where Φi represents the incident radiant power (flux) on the surface, and Φr represents the
reflected radiant power. An equation similar to Equation 2.7 may be used to compute transmit-
tance, τ , in the lower hemisphere:

τ(θi, ϕi;λ) =
Φt(θi, ϕi;λ)

Φi(θi, ϕi;λ)
, (2.8)

where Φt represents the transmitted radiant power.
Based on the works of Judd [110] and Nicodemus [153, 154], the directional-hemispherical

reflectance and the hemispherical-directional reflectance (radiance) factor quantities are con-
sidered numerically equivalent for a given direction as a direct consequence of Kirchhoff’s
law [152] and the Helmholtz reciprocity principle [110]. Hence, for practical purposes, in
studies involving the radiometric responses of materials characterized by a near-Lambertian
behaviour, such as snow irradiated from an angle of incidence of 0◦ [54, 190], directional-
hemispherical reflectance and hemispherical-directional reflectance factor can be used inter-
changeably [18, 134].

2.3 Probability Terminology and Monte Carlo Concepts

In this section, we briefly introduce the terminology that will be used later in this thesis. We
begin by providing the definitions for probability terms. We then provide a concise overview of
Monte Carlo concepts. For more details, the interested reader is referred to the statistics texts
by Wasserman [233] or Ross [185], and to the text on Monte Carlo methods, by Hammersley
and Handscomb [87].

Consider a complete set of outcomes, B. For every event, B ∈ B, a real value is assigned
to B, namely, P(B), that is called the probability of B. The function P is called the probability

18



distribution. Note that P(B) ≥ 0 for all B and P(B) = 1, i.e., the sum of the probabilities of all
events is one [233].

A random variable is a mapping, Y : B → R, that assigns a real number Y (a) to each
outcome a. This concept serves as a connection between the data and the sample space, i.e., the
values of the probability distribution.

A random variable is continuous if there exists a function fY such that fY (y) ≥ 0 for all x,
the sum of all the values of fY (x) is one (i.e.,

∫∞
−∞ fY (y) dy = 1), and for each a ≤ b:

P(a < Y < b) =

∫ b

a

fY (y) dy. (2.9)

The function fY is called the probability density function (PDF).
We now turn our attention to Monte Carlo methods for the remainder of this section. Monte

Carlo methods are a branch of experimental mathematics where one infers conclusions from
observations [87, 220]. More specifically in this thesis, we use Monte Carlo integration to eval-
uate an integral using random sampling. For example, we use random sampling to compute the
value of J in the following expression:

J =

∫
f(x) dx. (2.10)

This is accomplished by independently sampling N points, X1, X2, . . . , XN according to a PDF,
p, and then computing the estimate:

FN =
1

N

N∑
i=1

f(Xi)

p(Xi)
. (2.11)

Note that we use the symbol FN for the estimation rather than J to indicate that the estimation
is a random variable, and that its value depends upon how many sample points are chosen.

2.4 Image Synthesis Background

In this section, we provide a brief overview of the image synthesis concepts employed in this
work. In Chapter 5, we present a method to incorporate data produced from the proposed
model (which is introduced in Chapter 4) into a traditional image synthesis pipeline. Although
we selected to focus on a traditional path tracer [112], the results of this work may be applied
to other rendering paradigms.
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Figure 2.9: Diagram depicting the basic set of data required for a local illumination model. The
vector n⃗ is the normal to the surface, l⃗ is a vector pointing to a the light source, the vector
v⃗ points to the viewer or eye point, and θ is the angle between the normal and the source of
illumination.

Generally speaking, two types of illumination mechanisms are considered in computer
graphics applications: local and global [63, 198]. In the following sections, we concisely ex-
amine these mechanisms.

2.4.1 Local Illumination Models

Local illumination models are precisely what the name implies, i.e., only local attributes of the
object being rendered and direct sources of illumination are required to compute the colour at
the point of interest. A simple example is depicted in Figure 2.9.

In Figure 2.9 the vector v⃗ points to the location of the camera (or the viewer) in the scene, n⃗
is the normal to the surface, l⃗ is a vector pointing to the light source, and θ is the angle between
the normal and the light source. A local illumination model is able to compute the colour at the
surface of the object given these data and (usually) access to the light source.

We remark that local illumination models can be more complex than described here. Fur-
thermore, local illumination models are typically combined with more sophisticated rendering
techniques such as the one discussed in the next section.

2.4.2 Global Illumination and Path Tracing

Global illumination in computer graphics is the concept of accounting for lighting effects across
the whole scene to be rendered. Rendering techniques that attempt to account for global illumi-
nation try to reproduce phenomena such as darkening in the corners of rooms and colours that
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Figure 2.10: Diagram depicting the basic path tracing algorithm.

bleed from one surface to another. One of the early global illumination techniques proposed
by the computer graphics community is path tracing [112]. Figure 2.10 depicts the basic path
tracing algorithm.

The path tracing algorithm is both iterative and recursive in nature. In a typical path tracer,
rays5 are iteratively cast for each pixel in the outputted image, i.e., in the rendering. Each ray
starts at the camera (or the eye point) of the observer, and it is cast through the current pixel
of an image. If an object is struck in the scene, its colour contribution is computed. This is
often done with a local illumination model as described in Section 2.4.1. A new direction is
then stochastically chosen for the ray and recursively cast into the scene. The direction may be
obtained using a PDF or derived from a phase function or a BRDF associated with the object
that was struck [198]. The recursion continues until a ray strikes a light source, or is terminated
algorithmically. The contribution of each recursively cast ray is typically scaled so that objects
closer to the camera (along the path of the ray) express a greater contribution.

Referring to Figure 2.10, ray r⃗1 is the primary ray cast through a pixel and l⃗1 is the secondary
ray used by the local reflection model at the intersection point. Ray r⃗2 is cast recursively. The
secondary ray l⃗2 is used to compute the contribution at the second point of intersection. The
recursion continues with primary ray r⃗3, etc..

We remark that many, but not all, implementations of the path tracing algorithm make
assumptions about the materials being rendered in the scene. First of all, as discussed in Sec-
tion 2.1.4, some path tracing implementations naively assume that the index of refraction is
constant across all visible wavelengths of light. This allows for a single ray to be used for
multiple wavelengths of illumination. This assumption, however, hinders the reproduction of

5The formulation of a ray includes both a point of origin and a direction. They are symbolically represented
here as vector quantities, to indicate their directional component.
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spectrally dependent phenomena.
Another assumption implicitly made by the path tracing algorithm is that materials exhibit

the Helmholtz reciprocity [110]. Simply put, in reality light is emitted from the source and traces
a path toward the viewer or the camera. However, in path tracing, the opposite direction is
traced by the rays, i.e., from the viewer to the light. The Helmholtz reciprocity is the assumption
that the reflective properties of the materials are the same in both directions, which is not the
case for all materials.
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Chapter 3

Related Work

In this chapter, we present a brief summary of prior works that model snow deposition and
light interactions with snow. The intent is not to be exhaustive, but to provide an overview of
the various simulation methods relating to snow appearance.

3.1 Computer Graphics

Visually depicting snow has long been a topic of interest for the computer graphics community.
Initial work tended to focus on modelling the precipitation and placement of snowpack upon
objects in the scene, while later works progressively added more enhancements to modelling
the aspect of snow accumulation. Other works delved into animating wind-swept snow, either
for the purpose of improving the deposition process or for rendering animations. In contrast,
there have been relatively few works that attempt to describe the appearance of fallen snow
itself. To our knowledge, no attempt to simulate the spectral appearance attributes of snow has
been presented in the computer graphics literature to date.

3.1.1 Snow Accumulation Models

Early attempts to model the accumulation of particulates focused on dust [94]. Later, related
methods were applied to falling snow. For example, Fearing [57] proposed an accumulation
model whereby “launch sites” were specified to emit particles upward in order to determine
occlusion and to compute the snow mass on geometric surfaces. Later, Muraoka and Chiba [142]
added air currents and temperature to their own snow accumulation model. Including another
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level of realism to the dynamics of the falling snow. Moeslund et al. [141] applied fluid dynamics
principles to simulate a wind field and introduced weather parameters such as temperature and
snow precipitation rate. Attempts to add even more realism to snow accumulation simulations
included efforts to introduce heat transfer for the purpose of simulating freeze/thaw cycles [132]
and to incorporate features such as snow bridging [215]. Other efforts attempted to accumulate
snow for large alpine scenes [62, 177].

Not all works intended to directly follow the path of adding more physical processes. A
model by v. Festenberg and Gumhold [214] instead implemented a statistical method for accu-
mulating snow based on observations, while Hinks and Museth [91] implemented a physically
plausible method based on level sets [162].

As computing power increased and 3D rendering chipsets improved, some works focused
on rendering snow accumulation in real-time. Haglund et al. [82] presented an early work that
made use of particle systems [180] to represent falling snow. Their work represented accumula-
tion using a height field which stored the height of the snowpack. Later, Tokoi [212] determined
snow occlusion using a shadow buffer technique, which dynamically accumulated snow onto
a static scene. This shadow mapping approach was later extended by Reynolds et al. [181] to
support dynamic scenes. An early effort by Wang et al. [227] employed the Boltzmann equa-
tion [39] to simulate the dynamic behaviour of the falling snow. Upon deposition, their work
used fallen snow flakes to update a height field that represented the total accumulation.

3.1.2 Animation

The animation of snow related processes (e.g., precipitation, deformation due to interactions
with rigid bodies and self-interactions) is another area where the computer graphics community
has focused its attention. Early on, Sims [199] recognized that particle systems would facilitate
the animation of falling snow. Later, Langer et al. [128] addressed the limitations of particle
systems with a hybrid method that adds dynamic texturing. With this hybrid method, dynamic
outdoor scenes could be rendered in real-time.

In addition to animating falling snow, other efforts have gone into animating snow that has
already been accumulated. For example, Sumner et al. [207] implemented a method to deform
and animate snow as a result of an impact with a rigid body. Their method allowed for the
compression of a height field by footprints etc., and for the material to be displaced to other lo-
cations of the height field. Later, Stomakhin et al. [205] introduced a material point method that
allowed for snow self-interactions such as snow balls gaining mass while rolling down a hill.
This work also allowed for rigid body interactions to deform accumulated snow. The method
of Stomakhin et al. was the first to simulate the behaviour of sticky, wet snow. Subsequently,
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a hybrid structure and a texture-mapped shell rendering method was developed by Wong and
Fu [237]. Their work further enabled the replication of the basic behaviours of snow at near
real-time rendering speeds. Continuing the pursuit of modelling snow at interactive rates, Da-
genais et al. [47] introduced a level set [162] method that partitioned the problem of simulating
snow interactions with rigid bodies into three components. A level set is affected by construc-
tive solid geometry [186] forming the imprints, while a granular simulation deposited the snow
that has been displaced by the solid body. The third component of the work by Dagenais et al.
added a fluid simulation to model the motion of flying snow.

Continuing in the vein of animating snow, Jubert [109] introduced a physical model to
compute the transport of snow that is affected by wind and scene geometry. A precomputation
is used to estimate the wind and precipitation in the scene. Employing this precomputation, the
model advects a particle system of snow through time in order to animate the snow transport.
Lastly, Jubert introduces a technique for rendering that employs graphics hardware.

On a grander scale, some works have attempted to model snow that is on descending sloped
surfaces in the form of an avalanche. For example, the work of Güçer and Özgüç [80] used
molecular dynamics to simulate cascading snow. More recently, Liu et al. [129] introduced
their own method based on geodynamics to model avalanches.

The works outlined so far, all deal with modelling snow deposition in the form of an accu-
mulation model or the animation of snow as it falls or interacts with rigid bodies. We remark
that few works have addressed the actual appearance of snow itself.

3.1.3 Snow Appearance

Interestingly, one of the earliest papers to include a discussion of snow in the computer graphics
literature gave primary focus to the macroscopic appearance of the material. The work by
Krueger [125] presented a “natural” process for producing textures that resembled the aesthetic
of sparkles (or glints).1 Although their work focused on the generation of textures, the study of
snow sparkles remains an active area of research using microfacets [44, 225] and other methods
of normal distribution [246].

An early effort to compute the appearance of snow was introduced by Nishita et al. [155].
This early work addressed the effect that multiple scattering has on the appearance of snow.

1The terms “sparkle” and “glint” are not clearly differentiated in the literature. The American Society for Testing
and Materials (ASTM) defines sparkle as “the aspect of the appearance of a material that seems to emit or reveal
tiny bright points of light that are strikingly brighter than their immediate surround and are made more apparent
when a minimum of one of the contributors (observer, specimen, light source) is moved.” [1]. We elected to use
the term sparkle and implicitly include glints by analogy [56].
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They assumed that snow exhibits a white colour and they integrated over a grid of voxels2 that
contained the snow material. They also accounted for the colour contribution due to skylight
in the integration process. Later, Yanyun et al. [244] were able to render large scenes using
a multi-mapping technique. They proposed that displacement maps be used to render nearby
snowy features, whereas volumetric textures be utilized for distant features. Although subsur-
face scattering within snow is not discussed in the work of Yanyun et al., sampling through the
volumetric texture allows for realistic images to be generated at a larger scale with many snow-
covered features, such as trees, contributing to the final rendering. To address the rendering of
snow for real-time applications, Ohlsson and Seipel [158] implemented a shading technique to
compute a snow colour function for this purpose. In addition to computing a plausible shading
for snow, their work attempted to capture macroscopic features, such as the texture of snow.

More recently, Frisvad et al. [64] implemented an analytic model to compute the scattering
properties of various materials. These include ice with briny water and air inclusions that act in
suspension of a pure ice host material. Their adaptation of Lorenz–Mie theory [73] represents
nonspherical particles with the quantity of equivalent spheres3 that preserves the volume-to-
area ratio of the nonspherical particles, and employs a constant for the real part of the index of
refraction. However, they incorporate the complex part of the index of refraction for water and
ice into their calculations allowing for them to reproduce some effects that are dependant upon
absorption. They parameterize their solution by using brine and air fractions and suggest that
algae and minerals could also be included. Similarly, Jarabo et al. [102] made use of the optical
properties discussed by Frisvad et al. in their own work. In addition to these two works, Meng
et al. [135] implemented a multiscale level of detail technique to render granular materials.
Among other materials, they also render images of snow at various scales.

The works discussed above focus on either modelling the accumulation of snow on geomet-
ric surfaces, animating the action of falling snow, snow deposition, the displacement of snow
or they attempt to account for macroscopic features of its appearance. To our knowledge, there
are no works in the computer graphics literature that attempt to directly compute the the ap-
pearance attributes of snow, notably its colour. This is of particular importance when impurities
are present or to address the appearance changes due to morphologically active snow [41, 43].
It is also relevant when light is transmitted though a snowpack into a space such as a snow cave
or a dwelling made of snow such as an igloo, or to correctly render the bluish hues observed in
depressions made in a snowpack.

2The 3D (volume) analogy of a 2D pixel.
3Equivalent spheres replace nonspherical objects with a quantity of spheres whose total volume to surface area

ratio is the same as the nonspherical object they intend to represent. Although suitable for investigations where
hemispherical contributions are averaged, this approximation has been shown to be inadequate when used for
investigations that require finer aspects of scattering such as those involving BRDF computations [105].
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Due to the scarcity of works addressing the appearance of snow by the computer graphics
community, we investigated works presented in other research communities that are interdis-
ciplinary in nature. In the next section, we provide a concise review of models of light and
snow interactions presented in the remote sensing literature. These modelling efforts are an
important part of elucidating the effects of snow grain characteristics on equivalent water con-
tent estimates from remotely acquired observations that are recorded via instruments aboard
aircraft or via satellites.

3.2 Snow Reflectance Models Aimed at In Silico Studies

This section provides an overview of selected works on the modelling of light and snow interac-
tions using stochastic ray tracing methods, rather than deterministic methods employed to nu-
merically solve related differential equations such as the DIScrete Ordinate Radiative Transfer
(DISORT) model [202]. The development of snow reflectance models is described in a manner
that highlights the evolution of the various efforts over the previous few decades. The focus of
this overview is on models primarily suitable for simulations of light interactions with snow in
the visible and infrared domains. The reader interested in modelling efforts in the microwave
domain is referred to the comprehensive work in this area by Picard et al. [173].

We begin by identifying initial attempts to model snow reflectance using single scattering of
spheres combined with analytical theory. Next, a selection of single scattering models that made
use of nonspherical shapes are presented before continuing with multiple scattering models.
These are subdivided into two categories: those based on a volume of modelled snow grains
and those that are based on tomographic scans of snow.

3.2.1 Single Scattering

Computational time and memory limitations led many initial works to focus on single scatter-
ing and use the computed results as a phase function to supplement a more complex, theoret-
ical analysis. This archetypal method was demonstrated early by Bohren and Barkstrom [28].
Assuming a monodirectional source beam of radiation, they computed the single scattering
phenomenological coefficients required for an application of the Mie theory [30] using a single
transparent sphere. Later, this was extended to account for snowpack depth to demonstrate a
preferential absorption of longer wavelengths in the visible region [27].

A transformative step in the paradigm was to consider nonspherical crystal shapes. Yang
and Liou [243] computed the phase function of hexagonal crystals using ray tracing, and com-
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pared their results to those obtained by using the finite difference time domain (FDTD)
method [66] on a similar crystal shape. The geometric ray tracing method was used for the
near field4 and then transformed to the far field using a novel intensity mapping algorithm.
This allowed them to extend their hybrid method to efficiently compute single scattering albedo
for small 3D ice crystals that were close to the FDTD results. Grundy et al. [79] performed a
single scattering simulation for arbitrary polygonal meshes. They focused on computing the
single scattering albedo, phase function, polarization5 and radiative transfer near the grain.
They were also able to find an analytical approximation to the single scattering phase function
using particle size, aspect ratio, and roughness as parameters. Recognizing the limitations of
using “equivalent spheres” [77], Jin et al. [105] investigated a variety of shapes and the effect
that their different scattering phase function had on bidirectional reflectance. They compared
spheres, plates, column crystals and aggregates of columns. The results of these single scat-
tering simulations were input into a radiative transfer model and compared with EM radiation
data measured at a wavelength of 870 nm. This wavelength was chosen to avoid the influence
of soot and liquid water content. A good agreement was obtained between the measured snow
sample and the simulated snow structure, thus demonstrating the degree of fidelity [78] that
can be achieved by in silico investigations.

3.2.2 Multiple Scattering

Although multiple scattering models are more complex, they are able to capture angular effects
of reflection [53]. Barkstrom [20] was an early advocate for multiple scattering models. His
work used sphere-shaped snow grains to provide a quantitative argument to consider multiple
scattering effects. Wiscombe and Warren [235] provided an analytic model, based on Mie the-
ory [73], that used the delta-Eddington approximation [108] to account for multiple scattering.
Their model also used spherical snow grains.

A number of attempts have since been made to simulate the 3D structure of snow grains
in order to reproduce multiple scattering effects. These efforts focused on modelling the 3D
structure of snow samples and then applying ray tracing to compute the scattering profiles.
Kaempfer et al. [111] tested two different snow representations. Their first attempt consisted of
filling a volume with hemispherically-capped cylinders. This allowed for the testing of param-
eters such as grain size and pore space. Their second attempt recreated the microstructure of
snow using an X-ray micro-tomography scan. This did not allow for parameter tuning. Instead,

4Near field computations involve those relatively close to the object influencing the EM radiation as opposed
to computations involving relatively distant, or far field, interactions [66].

5Polarized light consists of rays that have been selectively oriented so that the transverse waves, which are
perpendicular to the direction of travel, are all oriented in the same direction [167].
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it provided a reconstructed representation of a particular snow sample. Bänninger et al. [4]
also used tomograph data to investigate biconical reflectance of snow with similar results, and
found good agreement between measured and simulated reflectance, while Haussener et al. [89]
used tomograph data to develop a method for determining snow optical properties. Interest-
ingly, their study [89] provided evidence that employing a simplified morphology in a radiative
transfer model will introduce significant errors in the visible and near infrared.

Later, Picard et al. [172] returned to the filled volume strategy. Their SnowRat model used a
variety of different grain shapes such as spheres, hexahedra, cylinders and hyperboloids. These
shapes, and aggregations of these shapes, were tested for their reflectance properties. In partic-
ular, the effect of snow grain shape on the specific surface area (SSA)6 to albedo relationship was
investigated at a wavelength of 1310 nm. They demonstrated that, for example, cubic grains re-
flected approximately 40% more than spherical grains with the same SSA. Addressing the lack
of readily available tomography data for snow, Xiong and Shi [239] generated a Gaussian ran-
dom field with a qualitatively similar structure to a tomograph [239, 240, 242]. This structure
was divided into ice and air by selecting a threshold value. Xiong and Shi later developed an
algorithm to successfully determine snow SSA using their model [241].

In addition to the above, a multi-layer model that investigated inhomogeneity of snowpack
was implemented by Zhou et al. [245]. They determined that in the near infrared, a thickness
of 5 cm is enough to be treated as semi-infinite. However, in the visible, a much larger depth is
required.

The models discussed thus far have addressed the reflectance of dry snow. This impacts the
results of the models since the optical properties of water differ from those of pure ice forming
snow. In particular, the locations and magnitude of the extrema in the imaginary part of the
complex index of refraction (see Section 2.1.4) can vary between the two. (The data used in
this thesis is discussed later in Chapter 6. See Figure 6.2 for plots of the indices of refraction
for water and ice.) The overall reflectance is affected because snow may contain some water
content, either as a vapour or in liquid form [41, 43].

Given this discrepancy, Green et al. [74] used Mie theory [73] in an attempt to determine
the effect that water has on the reflectance on snow. In particular, they focused on the local
extrema in the extinction coefficient for ice and water which occur at 1030 nm and 980 nm,
respectively. They demonstrated a shift of the absorption features centred at 1030 nm toward
shorter wavelengths by representing snow grains as water-coated spheres.

It is worth noting that the importance of research initiatives for properly accounting for
multiple scattering within snow deposits transcends spectral domains. For instance, Picard

6The specific surface area (SSA) is a measure of the surface area per unit of mass [187].
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et al. [173] have recently remarked that accurate simulations of microwave interactions with
snow on the ground would require more advanced scattering models, which, in turn, would
demand full 3D representations of snowpack microstructure.

Although this section concentrated on prior works that have employed stochastic methods
to model light interactions with snow, one relatively recent deterministic method is concisely
addressed here for completeness. Namely, the Snow, Ice and Aerosol Radiative model with
Adding-Doubling solver, version 3.0 (SNICAR-ADv3) that was described by Flanner et al. [61].
The origins of this model date back to the initial work of Wiscombe and Warren [232, 235] in
1980. However, the latest version of the SNICAR-ADv3 model incorporates research findings
from a variety of project sources. This latest revision is of note because it attempts not only to
account for atmospheric aerosols as its forbear does [232], but also to account for algae, mineral
dust, volcanic ash and brown carbon, although more effort is required in some of these areas.

In this chapter, we have provided a concise summary of works that introduce snow-related
models in the literature. Since the main purpose of the framework proposed in this thesis is
to study light interactions with snow aiming at generating appearance data for this material,
the snow accumulation and animation models summarized in Sections 3.1.1 and 3.1.2 are not
suitable for that purpose. Furthermore, although the models discussed in Section 3.1.3 focus on
appearance, most do not attempt to directly compute the spectral appearance attributes of snow.
Instead, they focus on macroscopic features [125, 225, 244, 246], prioritize optimization [158]
or fail to include a number of important snow characterization traits [64, 102]. The appearance
models introduced in Section 3.2 are primarily designed to study light interactions with snow.
However, many of them focus on single scattering [28, 79, 105, 243], only account for spherical
grains [20, 202, 235], do not account for a comprehensive set of snow sample properties [4,
61, 74, 89, 111, 172, 239, 240, 241, 242, 245], or target spectral domains outside of the ranges
employed in this thesis [173].

For these reasons, in this work, we selected to employ an abstraction paradigm [115] that
enabled us to fully account for the particulate nature of snow while incorporating the specific
characteristics that make it markedly distinct from other granular materials like sand. This
choice, in turn, allowed us to develop a novel model of light and snow interactions capable of
providing high-fidelity spectral and goniometric outputs that can be seamlessly incorporated
into rendering systems. The inner workings of this model and its predictive capabilities are
addressed in the next chapter.
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Chapter 4

Modelling Light and Snow Interactions

This chapter provides an overview of the proposed framework’s central component, namely
a novel light transport model for snow, henceforth referred to as SPLITSnow (SPectral LIght
T ransport in Snow). It builds upon a proven first-principles approach previously used to sim-
ulate the light interactions with sand-textured soils [115]. This approach accounts for a wide
variety of physical phenomena exhibited by granular materials via the stochastic generation
of grains on-the-fly throughout the simulation process. While other multiple scattering mod-
els that employ ray tracing geometric optics are constrained by the computer memory and the
computational complexity of managing a large dataset of grains, this stochastic approach makes
use of a single grain at a time. Thus, even semi-infinite samples are within reasonable compu-
tational limits without requiring expensive hardware resources. Furthermore, the stochastic
generation of surface properties allows for detailed modelling of complex geometries without
the requirement to store these primitive shapes. The proposed model can predictively simulate
the spectral and spatial distributions of light interactions with snow. The spectral radiometric
responses are quantified in terms of spectral reflectance and transmittance, whereas the spatial
radiometric responses are quantified in terms of scattering distribution functions.

We begin with a high-level discussion of the architecture and the data considerations that
influence the model’s design. We then discuss the characterization of snow and the properties
that affect light transport through snow. Finally, we discuss the model formulation itself.

Note that for the purpose of clarity, we initially make the assumptions that the snowpack
being modelled is pure, homogeneous and comprised of a single layer. More specifically, the
sample contains no impurities, variations may exist between grains, but any two separate vol-
umes of snow within the sample have the same set of characterization values, and the snow has
consistent properties throughout its depth. We will relax these restrictions in Sections 4.4–4.6.
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4.1 Data Considerations

Data considerations are an important aspect of model design. These considerations include
both data input into the model as well as the data resulting from the output of simulation.
Figure 4.1 provides an outline of how data are used in the formulation of the model proposed
in this framework.

Starting from the top of Figure 4.1, sample characterization data obtained from the existing
literature are used as inputs to the framework. Characterization traits are physical attributes
that define the properties of a material. These data directly influence model inputs, design
and architecture. In particular, utilizing data as it is commonly presented in the geophysical
research [60] and field studies [54, 190] will increase the suitability of the model for performing
interdisciplinary in silico studies.

As data collected from the literature influences the inputs to a model, so does data collected
from the literature that are used in the evaluation of the model. Outputs of the model are
tested against these measured values obtained from the literature. In addition to direct mea-
surements, phenomenological trends reported in the literature are also used in the evaluation
of a model. More specifically, the model outputs are evaluated to verify whether they repro-
duce these phenomenological trends. For the purpose of evaluation, in this thesis, we identify
changes observed either in the spectral distribution or spatial distribution of light in response
to changes in a characterization parameter, as phenomena.

The results of this evaluation process affect the design and implementation of the model,
which in turn, may require the collection of more data from the literature. This process is itera-
tively repeated until the model is able to predictively reproduce the reported phenomenological
trends and a suitable agreement with measured data can be produced.

The outputs of the model are material appearance attributes (see Section 2.2) that may be
used for a variety of purposes. Accordingly, these attributes may be utilized in image synthe-
sis pipelines or to conduct in silico experiments aimed at interdisciplinary investigations and
applications.

4.2 Snow Characterization

In this section, we give a brief overview of the snow material properties identified in the litera-
ture that were selected to be included as characterization parameters for virtual snow samples.
In Section 4.3, we provide implementation details for how they were incorporated into the sim-
ulations.
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Figure 4.1: Data flow through the SPLITSnow simulation framework. The green Data Collection
and Evaluation modules are framework components that employ data obtained from the litera-
ture. The blueAppearance Attributes module indicates the framework component that processes
and manages the outputs from the modelling framework. Lastly, the red Image Synthesis and
In Silico Experiments modules indicate framework components that synthesize outputted data
into products.

33



Parameter Value Range Units
✓ Particle size [50, 3000] µm

Temperature [-40, 0] ◦C
Sample thickness [1, 100] cm
Water saturation (pore space) [0, 0.5] unitless
Density [50, 450] kgm−3

✓ Facetness [0, 1] unitless
✓ Sphericity [0, 1] unitless

Table 4.1: Snow sample characterization parameters and the range of values modelled in this
thesis, which are based on physically valid ranges obtained from the literature [29, 60]. Pa-
rameters in the upper section directly employ values obtained from the literature. Values in the
lower section are unitless and are used to estimate snow features that are specified qualitatively
in the literature. Characterization parameters with a check mark are specified as distributions
instead of scalar values.

Effective modelling of a material begins with a study of the characteristics that define a sam-
ple. This includes both the enumeration of properties as well as the determination of the physi-
cally valid ranges for each of these characteristics. The International Association of Cryospheric
Sciences (IACS) in partnership with the United Nations Educational, Scientific and Cultural Or-
ganization (UNESCO) International Hydrological Programme (IHP) has published a reference
document that provides guidance on the properties used to classify seasonal and machine-made
snow [60]. In addition to highlighting various important snow characteristics, typical values
for several of the defining traits are provided. Unless otherwise stated, the characterization
description and range of physically valid values discussed in this section will come from this
IACS reference document [60]. Table 4.1 provides a summary of the characterization attributes,
and a depiction of some of these properties is presented in Figure 4.2.

Grain size is one of the most predominantly studied features of snow since it is known to
have a significant effect on reflectance [74, 105, 130, 144, 156, 157]. Any model computing the
reflectance of light from snowpack samples would be remiss not to include it as a parameter.
Water content is another characteristic that has an effect on reflectance. Even though water is
the liquid form of ice, it has different optical constants [83, 229]. Water is specified as a fraction
of the pore space, which corresponds to the portion of a snow sample’s volume that is not
occupied by the grains.

Size is not the only characteristic used to describe snow grains. Smoothness and shape are
also used to describe them. As it will be discussed in Section 4.3, we represent snow grains as
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Figure 4.2: Examples of various snow characteristics and their effect on a snow sample. On
the left, the snow sample utilizes mostly mid-sized grains, more water and has a lower density.
On the right the sample has a greater variety of grain sizes, less water and is more dense.
The symbol Xi indicates the location where a light ray enters the material and the symbol Xr

indicates the point of exitance after being reflected and refracted through several grains. The
thickness of the sample is represented by h.

prolate spheroids.1 These spheroids can be augmented to reflect crystalline features of snow
grains by introducing a unitless parameter that controls the distribution of facets on the snow
grains, making them have less (low values) or more (high values) crystalline features. (See
Section 4.3.2.) We use the term facetness to refer to this value. Snow grains also come in various
shapes. The sphericity is the parameter used to control the overall shape distribution of the
grains. It determines how spherical (high values) or elongated (low values) a snow grain is.

Although the impact of density on snow spectral responses remains to be thoroughly elu-
cidated [18], it is recognized as a key nivological characteristic [60]. Accordingly, it is incorpo-
rated into the model formulation as a pertinent parameter. Since the density of ice is a function
of temperature [187], the snowpack temperature is also included as a model parameter.

If snow is not optically thick,2 then light will be transmitted through the volume of the
material and less light will be reflected to the surface. Therefore, sample thickness is included

1Prolate spheroids have their semi-major axis extended to be greater than their semi-minor (or equatorial) axis
such as that of a rugby football. This is in contrast to oblate spheroids whose semi-major axis is less than the
semi-minor axis and look squashed [90].

2An optically thick volume is one in which light is readily absorbed [29].
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as a parameter as it affects both the reflectance and transmittance of snow. We remark that for
homogeneous, single layered snow samples, the light transmitted through the bottom of the
sample is not reflected back into the sample, i.e., the material beneath the snowpack is assumed
to be a perfect absorber at all wavelengths.

4.3 Model Formulation

This section describes the basic formulation of the proposed SPLITSnow model. In particular,
it focuses on light interactions with a homogeneous sample of pure snow that is consistent
throughout its depth. We address aspects associated with layering, heterogeneity and impu-
rities in Sections 4.4, 4.5 and 4.6, respectively. We begin with an overview of the model in
Section 4.3.1. Details about the stochastic generation of individual grains are provided in Sec-
tion 4.3.2. In Section 4.3.3, the simulation of light interactions with individual grains using
geometric optics is described. We then discuss light transport through the interstitial medium
in Section 4.3.4. Finally, Section 4.3.5 examines two different ways that water content may be
specified and provides a mechanism to convert between them.

4.3.1 Overview

The proposed model employs a first-principles simulation approach. This approach is imple-
mented using an algorithmic formulation based on the application of Monte Carlo methods [87]
and geometric (ray) optics concepts [31] as schematically depicted in Figure 4.3. A light ray (or
more concisely, a ray) travelling at a specific wavelength is directed toward the sample from
the illumination source. The sample is bounded by both upper and lower planes. Within these
planes a sequence of grains is instantiated and discarded, keeping only the currently active
grain stored in memory. In the diagram depicted in Figure 4.3, the black grain is the current
one being examined by the simulation. The faded grains with solid outlines were completed
and have been discarded. The faded grains with dashed outlines have yet to be instantiated. All
grains are instantiated as needed, and their properties are all determined stochastically. This
process is repeated to ensure the convergence of the radiometric quantities being estimated
[17, 124].

Figure 4.4 provides a high-level overview of the decision tree that a ray undertakes when
interacting with the material. The incident ray is at the top of the flow chart. Given a ray, the
first task is the process of grain generation. After grain generation, the ray interacts with the
pore space. This may entail the space between two grains, or the space between a grain and the
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Figure 4.3: Diagram illustrating the traversal of a ray through a given snow sample using the
stochastic approach employed by the proposed model. After a ray enters the sample at the
pointXi, a sequence of grains is generated. Each grain is modelled as a prolate spheroid whose
geometric properties are selected stochastically. The distance between grains, dp, is also cho-
sen at random based on the specified sample density, D. Grains that have been traversed are
shown with a solid outline. Grains that have yet to be instantiated are shown with a dashed
outline. Only one grain is required to be stored in memory at a time. This grain is shown with
a solid black outline. To simulate the grains’ facets, their normal vectors are perturbed using
a probability distribution. Air is the default interstitial medium between grains. In this work,
water may be used as a second medium. The fraction of pore space that is made up of water is
specified as a model parameter. The presence or absence of interstitial water is decided using
the water fraction as the probability. The ray’s traversal is completed when it exits the sample
at the point Xr. Alternatively, it can be terminated by an absorption event within the sample.
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Figure 4.4: Flow chart depicting the high-level decision tree that a ray undertakes when in-
teracting with snow grains. Note the iterative nature of the decision tree, whereby grains are
generated on demand until the ray is either absorbed, or exits the material.

material boundary. If a newly generated grain is outside of the material boundary, then the ray
interacts with the boundary, rather than the grain. Otherwise, the ray interacts with the grain.

As light first enters the sample, a random distance, dp, to the first grain is computed by
using:

dp = −d ln (ξ) , (4.1)
where d is the mean distance between grains, ln is the natural logarithm, and ξ is a uniformly
distributed random variable in the range of (0, 1). The mean distance between the grains is
computed from the specified density,D, which is a model parameter. Note thatD represents the
density of the sample in a dry state, i.e., when there is only air in the pore space. Technical details
describing the method of computing the mean distance from D are provided in Appendix B.
It is worth noting that the density of a sample may be specified in related works [169] with
respect to its wet state, i.e., considering the presence of water in the pore space. Accordingly, a
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procedure to obtain D from a “wet” density value is outline in Appendix C.
Once a distance is chosen, a grain and its geometric properties are then generated. These

properties include the major and minor spheroidal axes, the entry point on the grain and the
normal vector at the intersection point. The grain is spatially translated so that the ray strikes
the point of intersection precisely. These properties are all determined using specific probability
distributions, which are discussed in Section 4.3.2. The ray may then be refracted or reflected
using the Fresnel coefficient [167]. (See Appendix A.) The probability of reflection vs. refraction
utilizes the Fresnel coefficient as the probability in a Bernoulli trial [233].3

If the ray is reflected, then the grain is discarded. At this point, a new distance to the
next grain is chosen using Equation 4.1, and another grain is generated with new properties
using the same probability distributions. In addition, an interstitial medium is also selected
probabilistically. The fraction of pore space that is composed of water is specified as a simulation
parameter, and this fraction is used as the probability of success in a Bernoulli trial. In this way,
the pore space is represented as being either water or air by the SPLITSnow formulation.

If the light enters the grain, then it is refracted using the grain’s complex index of refraction
[31]. This (spectrally) wavelength dependent quantity has distinct values for ice and water. The
stochastically generated surface normal vector is used with these values to compute the ray’s
direction within the grain. Once within the grain, the ray may be transmitted or absorbed.
To determine whether or not the ray is absorbed by the grain, the length travelled to the exit
point and the grain’s extinction coefficient are used to compute the probability, which is used
in another Bernoulli trial. Should the ray be absorbed, it is discarded along with the grain, and
a new ray is cast from the source. Otherwise, the ray reaches the exit point of the grain and the
Fresnel coefficient is used once again to determine if the ray is internally reflected or refracted
out of the grain and into the medium. A new normal vector is stochastically generated at the
potential exit point for this purpose.

Internal reflection may continue until the ray is absorbed or exits the grain. In the former
case, the ray is terminated and the grain is discarded. In the latter case, Equation 4.1 is used
to compute the distance to the next grain, and an interstitial medium is again probabilistically
chosen. It is possible for the interstitial medium to absorb the ray. The distance and the ex-
tinction coefficient of the selected interstitial medium are used to probabilistically determine
whether this occurs.

Should the ray reach either the upper or the lower bounding plane, then its direction of
exitance are used to compute a BSDF value. A set of these values output by the simulations,
in turn, can be can be used to obtain a full BSDF profile of a given sample. In this work, no

3For some p ∈ [0, 1] and random variable ξ ∈ [0, 1], a Bernoulli trial is a success if ξ ≤ p [233].
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boundaries are imposed on the horizontal dimensions. Consequently, samples are considered
infinite in the x and y dimensions, but finite in the z-axis (depth). It is worth noting that the
BSSDF is well defined since both the position and the direction of exitance are known. However,
for most applications, the BSDF will suffice.

There are a number of computational advantages to this approach. First, the amount of
in-memory storage is drastically reduced since only one grain is kept at a time. However, elim-
inating the computational costs of traversing a complex search space provides an even greater
benefit. Rather than storing a multitude of grains, which would require the computational cost
of searching through the complete set for the nearest grain, the stochastic approach employed
by SPLITSnow only requires a small number of calls to a random number generator. It is worth
noting that once a ray exits a grain, it will not interact with that specific grain again since the
latter has been discarded. Although this aspect may seem restrictive, it is outweighed by the
employed approach’s intrinsic efficiency. We remark that it aggregates the outcomes of numer-
ous trials for the purpose of Monte Carlo integration. Hence, its algorithms are geared toward
maximizing the fidelity-to-cost ratio of the simulations.

4.3.2 Grain Generation

The SPLITSnow formulation is not dependent upon any particular grain shape. In this work,
prolate spheroids are employed for consistency with the literature on snow deposits subject
to morphological changes over time [41, 43], commonly referred to as faceted particles [60].
As described below, the SPLITSnow formulation allows crystalline features to be added to the
spheroids in the form of microfacets [44, 213]. This representation allows for a variety of mor-
phological ages to be investigated, which are more prevalently the object of geophysical inves-
tigations.

The geometric properties of each grain are generated stochastically (see Figure 4.5). These
properties include the size, shape, location and the microfacet at the point of intersection. The
values assigned to the grains’ optical properties, such as the index of refraction and the extinc-
tion coefficient for ice, were obtained from datasets available in the literature. The sources of
these datasets are provided in Chapter 6.

The grain’s semi-major axis, b, is a random variable with a uniform probability distribution
that allows for a configurable range. Its sphericity, Ψ, is also a represented by a random variable
based on a probability distribution obtained from the literature [221]. Inscribed circle sphericity
[183] relates the overall shape of the grain to a perfect sphere. For a perfect sphere, Ψ is equal
to one. Low values of Ψ lead to the generation of shapes that have a high eccentricity. The
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Figure 4.5: Generated geometric properties of a grain. Diagram (a) depicts its axes and a stochas-
tically selected intersection point on its surface. The semi-major axis, b, is chosen at random
based on a uniform distribution. The semi-minor axis, c, is a function of b and the inscribed
circle sphericity, Ψ, which is also a random variable (see Equation 4.2). The orientation of the
semi-major axis is determined by selecting a uniformly distributed point on a sphere and orient-
ing the axis in the direction of that point. The intersection point on the grain, xi, is uniformly
distributed on the spheroid. However, it is restricted to the side facing the incoming ray. The
location of the grain is adjusted to ensure that xi intersects the ray. The local origin of the grain
is represented by the red axes, and the orange dashed line represents the particle’s translation
so that the ray intersects the grain at xi. At xi, the angle of the normal vector away from the
orthogonal direction is perturbed using a normally distributed random variable. Diagram (b)
illustrates how the surface details are represented as microfacets, which are associated with
their specific normal vectors.

semi-major and semi-minor axes are related to Ψ through the following formula:

Ψ =

√
c

b
. (4.2)

Equation 4.2 can then be used to compute the semi-minor axis, c, from b and Ψ. Note that the
relationship between grain size and sphericity is such that the selected grain size is used for the
value of the semi-major axis, b.

The orientation of the grain is stochastically chosen by uniformly selecting a point on the
unit sphere and orienting the semi-major axis toward this point. The point of intersection with
the grain is also distributed uniformly on the surface of the grain. However, it is restricted so
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that it must be facing the direction of the incoming ray. The grain is then repositioned (indicated
by an orange dashed line in Figure 4.5(a)) so that the incoming ray strikes it at the stochastically
selected point. Due to the stochastic nature of this process, it is possible that a grain is partially
outside of the material boundaries when close to the upper or lower bounding planes. When
this occurs, the grain is rejected and a new one is generated.

4.3.3 Light and Grain Interactions

When a propagating ray travelling at a wavelength, λ, interacts with a grain, it is probabilisti-
cally reflected or refracted based on the spectrally-dependent Fresnel coefficient [167]. There-
fore, to simulate the faceted features of a morphologically young ice crystal, its normal vector is
perturbed at its faceted surface, as depicted in Figure 4.5(a), using a stochastic approach. More
specifically, Figure 4.5(a) shows the intersection point, xi, on the surface of the spheroid. For
the local area surrounding xi, a new normal vector to the surface is stochastically generated as
described below. This keeps the overall grain size consistent while allowing for more faceted
forms. The result of this approach is portrayed graphically in Figure 4.5(b).

For a normal vector, n⃗, of the spheroid at hand, a perturbed normal vector, n⃗′, is computed
using a random variable, ξ, that is normally distributed with a mean of zero by the formula:

n⃗ · n⃗′ = 1− |ξ|. (4.3)

The standard deviation of the normal distribution is defined as:

σ =
F

2
, (4.4)

where F represents facetness, a tunable model parameter. More precisely, a facetness of zero
yields a perfectly smooth spheroid. Since n⃗ (and by construction n⃗′) are unit vectors, their inner
product results in the cosine of the polar angle θ. The azimuthal angle of the perturbed normal,
ϕ, is selected using a uniform distribution in the range of [0, 2π]. Using this stochastic method,
both faceted and smooth grains are represented efficiently, without the computational overhead
of directly accounting for complex details on the grain’s surface.

The Fresnel coefficient is then used to determine the probability of reflection. A Bernoulli
trial is performed using this probability to determine success. Upon success, the ray is reflected
into a stochastically chosen interstitial medium (see Section 4.3.4). Otherwise, the general form
of Snell’s law that makes use of both the real and imaginary components of the grain’s complex
index of refraction (See Appendix A) is used to determine the ray’s angle of refraction into the
grain [31].
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Diffraction (wave) effects are not considered since the wavelengths of light used in this
investigation are considerably shorter than the separation between the snow grains. The maxi-
mum snow density considered in this work is 450 kgm−3 [29]. Choosing this density yields the
smallest mean distance between snow grains, which computes to roughly 4.3 × 10−4 m. (See
Appendix B.) The longest wavelength of incident radiation considered in this work is 2500 nm,
or 2.5 × 10−6 m, which is two orders of magnitude smaller than the smallest mean distance.
Furthermore, the grain shapes considered are spheroidal, and thus the apertures between grains
generally do not form rectangular patterns with the aperture lengths being significantly greater
than their widths — a geometry which is commonly associated with diffraction effects [167].

Within the snow grain, the possibility exists that the ray will be absorbed. The probability of
absorption depends upon the length of the path the ray travels through the grain. The (potential)
exit point out of the grain is computed geometrically as a ray-object intersection (with the
object being represented by the grain’s inner surface). The distance travelled within the grain,
dg, along that path is thus calculated as the length along the ray between the entry (incidence)
point and the exit (exitance) point.4 The probability of transmission,5 pt, is a function of this
distance, and it is given by the Lambert law [198]:

pt(λ) = e−αice(λ)dg , (4.5)

where αice(λ), the specific absorption coefficient (or simply s.a.c.) is computed as:

αice(λ) =
4πkice(λ)

λ
, (4.6)

with kice(λ) representing the extinction coefficient at the wavelength λ for ice [230]. Note that
αice has units of m−1. The ray propagation inside a grain is then stochastically terminated if
pt(λ) < ξ, where ξ corresponds to a random number that is uniformly distributed between 0
and 1.

4.3.4 Light PropagationThrough the Interstitial Medium

When the ray is propagated through the interstitial medium, either because it has been reflected
off a grain, or because it has exited a grain, the optical effects of the interstitial medium must be

4In case a given ray bounces multiple times inside a grain, the distance, dg , is recalculated using the previous
hit point instead of the ray’s incidence point, and the ray propagation (absorption) test is employed again.

5Note that there is a typo in our published work [219], namely the word “absorption” was used instead of
“transmission” in the introduction of Equation 4.5.

43



taken into account. The SPLITSnow formulation allows for any number of media to be present
in the interstitial (pore) space between grains. However, for the purpose of simulating light
interactions with snow, only two media are considered. These are water and air.

The default interstitial medium between the snow grains is air. The fraction of pore space
that is made up of water is specified as a model parameter, denoted by S. When the ray enters
the pore space, the presence or absence of water is decided using this water saturation param-
eter (S) as the parameter of success in a Bernoulli trial. If water is chosen (ξ ≤ S), then the
pore space up to the next grain is assumed to be composed of water. Otherwise, the pore space
is assumed to be air.

The distance to the next grain, dp, is stochastically determined using Equation 4.1 as de-
scribed in Section 4.3.1. Similar to a ray interacting with a grain, a ray traversing the interstitial
medium may be absorbed within it, with the probability of transmission being computed using
equations analogous to Equations 4.5 and 4.6, except using the constant values for liquid water
instead of ice:

pt(λ) = e−αwater(λ)dp , (4.7)
where the s.a.c., αwater(λ), is computed as:

αwater(λ) =
4πkwater(λ)

λ
, (4.8)

with kwater(λ) representing the extinction coefficient at the wavelength λ for water [83, 164,
174]. If the ray is absorbed, then a new ray is cast and the process begins again. Otherwise, a
new grain is generated as described in Section 4.3.2. The complex index of refraction for the
current medium is used when computing the Fresnel coefficients and employing Snell’s law to
obtain the direction of propagation of rays interacting with individual grains (Section 4.3.3).

4.3.5 A Note on Water Saturation

As discussed in the previous section, the SPLITSnow formulation incorporates water saturation
as a fraction of the pore space (denoted by S). However, sometimes (liquid) water is specified
as a fraction of the total volume (denoted by W). Equation 4.9 provides a method to convert
this quantity to saturation as employed in this work.

S =
DiceW

Dice −D
, (4.9)

where Dice is the density of ice and D is the density of the sample’s snow grains which is
specified as an input parameter. For a detailed derivation of Equation 4.9, please see Appendix C.
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4.4 Multi-layered Samples

So far in this chapter, we presented a formulation of the SPLITSnow model having made the
assumption that the entire snow sample was homogeneous throughout its depth. However,
such an assumption is not always valid. Indeed, as snow falls in separate weather events, several
layers of differing characterizations will form and may be classified differently. In the field,
the classification of the layers is represented by a snow profile record which documents the
stratigraphic layers of a snowpack. (See Figure 4.6 for an example snow profile record.) This
task is usually performed by digging a vertical snow pit and recording observations on a per-
layer basis [60].

In order to accommodate layered samples of snow, an iterative approach was employed.
Simply put, this feature of the SPLITSnow model allows for layers to be specified from bottom to
top, with the basal layer being identified as layer zero. Note that it is not strictly necessary that
layer zero be in contact with the underlying surface. However, by default, all light transmitted
through this layer will not be reflected back into the snowpack, as outlined in Section 4.2. Thus,
for a multi-layered snow sample, layer zero is treated in the same manner as a single layer snow
sample. However, rather than processing and returning the results of the layer to the user, the
results are cached in temporary storage to be utilized by the subsequent, covering layer.

When the implementation instantiates the second layer, i.e., layer one, which is situated
above the basal layer, the results obtained from layer zero are specified as a parameter to the
forthcoming layer. More specifically, the spectral distribution computed from layer zero is used
as an additional parameter to layer one. If a ray is transmitted through layer one into layer zero,
rather than assuming a perfect absorber exists, the spectral results of layer zero are sampled. In
particular, the reflectance value for the current wavelength of light is used as a test value in a
Bernoulli trial. If the random variable is less than the reflectance value, then the ray is reflected
back into the snow sample; otherwise it is absorbed. This process is repeated for any additional
layers above layer one in an iterative process. This accounts for reflection and absorption for
all the lower layers since the reflectance of the deeper layers is implicitly accumulated.

For the purpose of computing the reflectance spectra of the subsurface layers of snow, the
polar angle of incidence is set to 0◦. This simplifying assumption is rooted in the observation
that that for a sample with a significant thickness the mean direction of the rays being transmit-
ted through to the lower layer is in the nadir direction, i.e., straight down from directly above
the point of observation. There are two issues with this simplification. First, this simplification
may not hold for very thin layers of snow especially when the angle of incidence is significantly
greater than zero. Second, as described in Section 7.3, angle of incidence does have a noticeable
effect on the BRDF of snow [54, 95, 231, 242]. The significance that this has on the spectral dis-
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Figure 4.6: An illustrative example of a snow profile diagram [60]. For a brief description of the
symbols please refer to Table 4.2.

Characteristic Symbol Unit
Hardness R N
Temperature T ◦C
Moisture θ %
Height H cm
Grain Shape F
Grain Size E mm
Density ρ kgm−3

Table 4.2: Symbols employed in snow profile diagrams. See Figure 4.6 for an illustrative exam-
ple. Vertical bars indicate increasing values for the θ column. H indicates the vertical compo-
nent irrespective of the slope of the terrain beneath the sample. For additional information, the
interested reader is referred to The International Classification for Seasonal Snow on the Ground
by Fierz et al. [60].

tribution for a particular wavelength may depend upon the values selected for the other snow
characterization parameters.

Lastly, we note that this iterative approach has only been applied to spectrometric in silico
studies, and that multi-layer goniometric (BRDF) experiments have been left as future work.
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4.5 Heterogeneous Samples

For many applications, the distributions discussed in Section 4.3.2 are suitable for describing
the grains in a virtual snow sample. However, it is possible that environmental conditions may
produce a more heterogeneous snow sample that contains a variety of distributions of snow
grains [190]. Typically two or three types of grains may be described in snow profile diagrams.
(See Figure 4.6, where layers consisting of multiple types of snow grains are depicted in the
second layer form the top.) For such samples, it may be beneficial to specify multiple snow
grain types in the virtual snow sample.

The SPLITSnow model supports multiple snow grain types, i.e., heterogeneous snow samples.
To implement this feature, first the number of different types of snow grains must be specified.
For each grain type, enumerated sequentially starting from one, a distinct set of parameter
values must be provided. This includes parameter values for the distribution which specifies
the grain size, facetness and sphericity. (See Section 4.3.2.) In addition to these values, the
fraction of each grain type in the sample must also be specified. Naturally, these fractional
values must sum to one.

Note that the addition of grain types to a sample slightly complicates the mean distance
computation, namely d. Section B.2 of Appendix B provides the details. Briefly, the computation
of d must be performed for each type of grain in the heterogeneous snow sample, and this
different value of d must be associated with each of the grain types.

4.6 Impurities

Thus far, our description of a virtual snow sample has only included pure ice grains and a
fractional amount of pure water within the pore space of the sample. However, samples of
snow may not be pure. Furthermore, the presence of impurities has an effect on the reflectance
(and transmittance) values of snow. In fact, it has been noted in the literature that impurities
with quantities as low as one part per million may affect reflectance by 5–15% [232], and it
has been shown experimentally to reduce reflectance in artificially made snow [81] as well
as in natural snow [169]. Note that impurities primarily affect the visible wavelengths of EM
spectrum [190, 228, 229], whereas the size and shape of the snow grain have a greater affect in
the infrared (IR) wavelengths [50]. Thus, quantifying these impurities is an important pursuit,
as their presence in surface snow may have an effect not only on the appearance of snow, but
also on processes that can alter global climate6 and sea levels [209]. To this end, the SPLITSnow

6Variations in the propagation of photosynthetically active (visible domain) radiation propagated by snow can
contribute to vegetation greening, a phenomenon known to be associated with climate change feedback loops [18].
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framework allows for the inclusion of trace amounts of carbon-based impurities within the
material.

There are two types of carbon-based impurities to consider: black (inorganic) carbon and
brown (organic) carbon [160]. Although these two terms have not always been used consis-
tently in the literature, we adopt their use as described by Olson et al. [160] in this thesis.

Black (inorganic) carbon is an absorptive material that is produced from combustion. In par-
ticular, black carbon is strongly absorptive across all visible wavelengths. Note that sometimes
the term elemental carbon is used in the literature to refer to black carbon [160, 161]. However,
for simplicity, we will avoid the use of this term.

Brown (organic) carbon is also a product of combustion. It is the fraction of the carbon-
based material (excluding black carbon) that is more absorptive in the lower wavelengths of
the visible spectrum and the UV [160], as opposed to being highly absorptive across all wave-
lengths. Brown carbon is typically associated with biomass burning [118]. For this reason, it is
sometimes referred to as organic carbon.

These carbon-based materials affect the absorption of rays traversing a snowpack. To incor-
porate them into the SPLITSnow formulation, we, therefore, must adapt the method whereby
EM radiation is absorbed. This means modifying Equation 4.5. More specifically, we add their
contribution to the α term in the exponent of the Beer-Lambert law. Thus, we introduce two
new terms, αbc and αbrc for black carbon and brown carbon respectively. The contributions
of these two terms are linear, and they can be added to the the existing α term as a linear
combination.

Recall that Equations 4.5 and 4.7 are used to calculate the probability for transmission of light
within the grains of ice and within the interstitial medium, respectively. In order to account
for the occurrence of carbon-based impurities in both the ice grains (through a sedimentation
process [179]) and in the pore space (through a suspension process [122]), we add a parameter
for each type of carbon that allows the fraction of black and brown carbon in sedimentation to
be specified as parameters Sbc and Sbrc, respectively. These are unitless parameters that take
values in the range of [0, 1]. As such, either black carbon or brown carbon may be present in the
snow grains in the form of sedimentation or in suspension within the pore space. Accounting
for carbon-based material in sedimentation and suspension form, leads to more comprehensive
versions of Equations 4.5 and 4.7 associated with the Beer-Lambert law, which accounts for the
impurities’ concentration:

pt(λ) = e−(αice(λ)+Sbcαbc(λ)+Sbrcαbrc(λ))dg , (4.10)
for computing the probability of a transmission event occurring within the snow grains, and

pt(λ) = e−(αwater(λ)+(1−Sbc)αbc(λ)+(1−Sbrc)αbrc(λ))dp , (4.11)
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for computing the probability of a transmission event occurring in the interstitial medium.
As mentioned above, carbon-based impurities are distinguished by their optical properties.

We now define these terms more specifically and put them into context for computing the
additional spectral absorption they foster. We start with a description of black carbon.

In the SPLITSnow framework, the s.a.c. of black carbon, αbc, is computed using the follow-
ing equation [118, 165, 178]:

αbc(λ) =
Mbcλbc

λAbc
DCbc, (4.12)

where Mbc is the Mass Absorption Efficiency (MAE)7 (in m2 g−1), λbc is the reference wave-
length (in nm), λ is the wavelength of light currently being examined (also in nm), Abc is the
Angstrom exponent, D is the density8 of the snow sample (in kgm−3) and Cbc is the concen-
tration of the black carbon impurities (in ng g−1).

We now turn our attention to brown (inorganic) carbon. Recall from above, that brown
carbon is also a product of combustion and that it is more absorptive in lower wavelengths of
the visible spectrum. Therefore, its effect on absorption is computed similarly to that of black
carbon, albeit, higher values for the Angstrom exponent are often used [118].

In the formulation of the SPLITSnow model, we use a default value of two for the Angstrom
exponent for brown carbon and leave the value of the Angstrom exponents with a wide range
of possible values as an optional simulation parameter [118, 234]. Thus, for brown carbon, we
compute αbrc similarly to Equation 4.12. This leads to the following expression:

αbrc =
Mbrcλbrc

λAbrc
DCbrc, (4.13)

whereMbrc is the MAE (inm2 g−1), λbrc is the reference wavelength (in nm), λ is the wavelength
of light currently being examined (also in nm), Abrc is the Angstrom exponent,D is the density
of the snow sample (in kgm−3) and Cbrc is the concentration of the brown carbon impurities
(in ng g−1).

Sometimes one finds the mass concentration of black (inorganic) carbon or brown (organic)
carbon is expressed as gm−3 in the literature (e.g., [160]). This is convenient since the units
of the equations above expect the concentration to be in these units. However, it is also quite
common to see carbon-based impurities specified in ng g−1 (e.g., [228]), which is also known as
parts per billion by mass. When this is the case, we obtain the correct units by multiplying the

7The MAE is also regularly referred to as the mass absorption cross section (or MAC) in the related litera-
ture [195].

8A conversion of units is required since the MAE is specified in m2 g−1 while the density is specified in kgm−3.
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concentration by the density of the snow sample, D. This ignores the density contribution of
the carbon impurities themselves. However, since the quantities are small (measured in parts
per billion and ranging in 0.8–32 ng g−1 [122]), we found this approximation acceptable.

Lastly, we note that D, Cbc and Cbrc in Equations 4.12 and 4.13 refer to a snow sample in a
dry state. However, if the employed Cbc and Cbrc values refer to a sample in a wet state (S > 0),
then theD in these equations should be replaced by theDwet (Appendix C), which corresponds
to the sample’s density calculated considering the presence of liquid water in its pore space.
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Chapter 5

Snow Appearance Visualization

Realistic reproductions of the outdoor world enhance an observer’s experience by setting the
scene in a believable surrounding. Accordingly, the rendering of material appearance changes
elicited by natural phenomena remains an active area of computer graphics research. However,
the intrinsic complexity of these phenomena often poses significant difficulties for their effec-
tive incorporation into realistic image synthesis pipelines. As a consequence, non-physical,
ad hoc approximations are frequently employed. These approximations, however, cannot pre-
dictively reproduce the distinctive spectral features of a myriad of these phenomena. The bluish
appearance that is observed when light has been transmitted through snow is arguably among
the most fascinating, albeit still relatively unexplored, of these spectral features.

The phenomenon is depicted in Figure 5.1. The top photograph was taken inside an igloo,
while the bottom photograph is of an illuminated garden lamp that has been covered by snow.
Observe that in both cases, the backlit snow has a bluish appearance that is linked to the process
of light transmission through the material [19, 27, 28] and the wavelength-dependent absorption
exhibited by the ice crystals that form the snowpack. We remark that many modern computer
graphics renderers make assumptions about the physical properties of materials in order to sim-
plify the computational cost of generating images. For example, it is commonly assumed that
materials fall into one of two categories: conductors and dielectrics, where conductors have the
full complex-valued indices of refraction and dielectrics have only the real-valued part. Further-
more, for a given material, it is also commonly assumed that the index of refraction is constant
across all wavelengths of light throughout the visible spectrum. We remark that these two sim-
plifications hinder the predictive rendering of many natural phenomena, including well-known
optical phenomena such as rainbows [143]. They also hamper the high-fidelity rendering of the
bluish appearance that is observed after light is transmitted through snow.
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Figure 5.1: Photographs depicting the bluish appearance that is observed when light is trans-
mitted through snow. Top: Daylight transmitted through an igloo wall formed by snow blocks.
Bottom: Light transmitted from a garden lamp covered by snow at dusk.1

We remark that snow is a common material that is often portrayed in feature films, video
games and other media. Many scenes in such media make use of lighting configurations where
the light source is obscured by snow. Thus, in addition to computing the spectral reflectance
properties of snow, the incorporation of light transmission through snow would enhance the
realism of these scenes.

As discussed previously, snow consists of distinct ice grains that are suspended in an air
medium. These ice grains are highly transparent. When light is transmitted through snow the
material often takes on a bluish appearance [27]. This appearance is elicited by attenuation
events within the material [28, 30]. Figure 5.2 provides a simplified illustration of the process
for the case of light transmission. In this figure, rays of light reflect and refract through the
various grains of ice that form a thickness of snow. As light traverses through the material, the
rays are also susceptible to absorption events, even though ice is highly transmissive.

Although snow and ice are frequently treated as perfect dielectrics by the computer graph-
ics community (i.e., only the real-valued component of their index of refraction is considered)

1Igloo photograph courtesy of Muntart via Getty Images. Garden lamp photograph courtesy of Gabriel E. C.
Baranoski.
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Figure 5.2: Sketch illustrating the selective absorption of light propagating through snow at
different wavelengths. Longer wavelengths of light (right), which are at the red end of the
visible spectrum, are more likely to be absorbed than shorter wavelengths of light at the blue
end of the spectrum (left).

ice does have an extinction coefficient [230], (i.e., the complex portion of the index of refrac-
tion) which is required for light absorption calculations. Furthermore, rendering software im-
plementations often make the simplification that the index of refraction is constant across all
wavelengths [38]. However, the complex index of refraction of ice is not constant across all
wavelengths throughout the visible spectrum. Indeed, ice is more absorptive at red wave-
lengths [169, 230].

As (light) rays traverse through a snowpack, scattering events (e.g., reflection and refrac-
tion) can occur [30]. As a result, the path length of the traversing light may be increased.
This phenomenon is known as the detour effect [36]. The light-grain interactions along the in-
creased path lengths present several opportunities for absorption events to occur. Since ice is
not strongly absorptive, many rays will penetrate to a significant depth within the fallen snow
[42, 216]. However, as ice preferentially absorbs (light) rays associated with wavelengths at the
red end of the visible spectrum, fewer of these rays will penetrate to greater depths, which is
the source of the bluish appearance that is observed [27, 28].

In Figure 5.2, the arrows represent the path taken by a beam of light through a snowpack.
Note that for simplicity, only a few grain interactions are included in the figure. The preferential
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absorption of light travelling at longer (more red) wavelengths is represented as a thinning of
the arrows in the figure. At the exit point of transmission, more photons are transmitted at the
blue end of the spectrum versus the red end of the spectrum. When these photons are integrated
either by a camera sensor or by the human visual system, a bluish appearance is recorded or
perceived.

To predictively reproduce the resulting appearance of snow, in particular, the bluish ap-
pearance observed via light transmission, we employed the SPLITSnow model to compute the
spectral values of the reflected and transmitted light. The methodology employed to assess the
predictive capabilities of the SPLITSnow model are discussed in Chapter 6.

Due to its stochastic nature, this model may incur relatively high costs when used on-the-fly
in computer graphics applications. To overcome these practical constraints while maintaining
a high level of visual fidelity in the rendering of scenes depicting the target phenomenon, we
present a framework centred in a methodology based on the availability of snow spectral data.

We note that measured transmittance datasets for snow are scarce in the scientific lit-
erature. Furthermore, existing datasets are limited to a small number of snow samples and
light incidence geometries. To overcome these data availability constraints, we employed the
SPLITSnow model to form a simulated spectral transmittance database, henceforth referred
to as the transmittance database. We then used principal component analysis (PCA) [176] to
reduce the dimensionality of this transmittance database. By employing this technique, a com-
pact representation of this database may be achieved without loss of visual fidelity. Moreover,
spectra are efficiently reconstructed using a constant number of floating point operations. For
consistency, we also employed the SPLITSnow model to produce a spectral reflectance database
for snow. Although the process of transmission and the transmittance database are the focal
points of the discussion for the remainder of this chapter, we include reflectance by analogy
and only point out differences where appropriate for reflection.

The remainder of this chapter discusses the proposed rendering framework which com-
prises three stages that are specifically addressed in Sections 5.1–5.3. In Section 5.1 we discuss
how to produce the transmittance database of spectral transmittance curves using the first-
principles, predictive light transport model proposed in Chapter 4. Section 5.2 discusses how
this database is compressed using PCA while ensuring that high-fidelity spectral reconstruc-
tions are viable. Finally, in Section 5.3, the specific methods employed to incorporate the spec-
tral reconstructions into a typical image synthesis pipeline, enabling the efficient reproduction
of the transmittance-elicited bluish appearance of snow, are discussed.
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5.1 Spectral Transmittance Database

For the purpose of generating the transmittance database, we selected a variety of snow charac-
terization traits that are known to have an impact on the process of light transmission through
snow. We then varied the associated model parameter values through physically valid ranges to
generate the database. The parameters we selected were facetness, grain size and density.2 Each
combination of these parameter values constitutes a unique virtual snow sample exemplar.

In addition to these three sample characteristics, light transmission through the material is
also affected by other factors, notably the thickness of the snowpack and the angle of incidence
to the light source. We, therefore, selected a set of snowpack thicknesses and distinct angles of
incidence. For each virtual snow exemplar, we also varied the thickness of the sample and the
angle of incident illumination. Hence, these two factors plus the three sample characteristics
formed the basis of five dimensions of snow variability.

Lastly, a spectral resolution needed to be selected for the transmittance curves of the trans-
mittance database. The selected spectral resolution was kept consistent for all entries of the
database, which was necessary since it was used as the number of columns of a matrix. This
matrix was central to the analysis which we discuss in the next section.

5.2 Principal Component Analysis

We applied principal component analysis (PCA) [176] to reduce the dimensionality of the trans-
mittance database that contains the spectral light transmittance curves obtained for snow. This
database consists of a set of several thousand spectral curves which quantify the relative spec-
tral power distribution of light transmission through snow for various virtual snow samples,
thicknesses and angles of incidence (see Section 5.1). For the purpose of this work, it is im-
portant to note that the database can be represented as an s × l matrix M , where each row s
contains the values of a spectral curve in the database, and each column l is associated with a
particular wavelength of light, λ.

To determine the number of required principal components, we use the method suggested
by Pratt [176]. Although several PCA techniques have been developed [107], the singular-value
decomposition (SVD) technique has been shown to be numerically stable. SVD factors M into
three matricesM = UΣV T , where U is an s×s orthonormal matrix, Σ is an s× l matrix whose
off-diagonal elements are zeros and V is an l × l orthonormal matrix. For s ≥ l, observe that

2Section 8.1 discusses the rationale for this selection.
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the values of Σ are the singular values of M and they satisfy the condition:

ς1 ≥ ς2 ≥ · · · ≥ ς l ≥ 0, (5.1)

where each ςj is the diagonal value for the jth row of Σ [107]. We then compute the s× l matrix
C =MV . Using this technique, V contains a new set of basis vectors (as column vectors) and
C stores the coefficients of each sample, relative to the new basis, V .

To reduce the size of the spectral database, we select l′ ≪ l columns from the matrices C
and V . Hence C ′ is an s× l′ matrix and V ′ is an l × l′ matrix. To reconstruct the spectrum for
a sample at row j, a 1× l′ matrix, C ′

j is created by selecting the jth row from C ′. Multiplying
C ′

j by V ′T yields the reconstructed spectrum. Note that, although there are many implemen-
tation strategies for PCA, the implementation of PCA used in this work, aims to minimize the
Euclidean norm of the difference between C and C ′ [107].

5.3 Visualization Process

We remark that the visualization process discussed in this section may be applied to any set
of snow parameter characterization traits. Furthermore, it may be applied to materials other
than snow such as sea ice or translucent fluids. The bluish appearance that is elicited by the
process of light transmission through snow is selected to exemplify the method due to its being
a more elusive phenomenon, and thus allowing for a more in depth assessment of the proposed
framework’s predictive capabilities. However, as mentioned above, the visualization process
described in this section is not limited to transmission, and it is equally applicable to databases
containing spectral reflectance curves. For simplicity and conciseness, in the following descrip-
tion of this process, the light reflected by snowy objects was accounted for using a standard local
illumination model for diffuse materials. However, where appropriate, considerations specific
to reflectance will be discussed.

The spectral curves in the transmittance database are incorporated into a typical rendering
pipeline in order to compute the colour exhibited when light is transmitted through snow in
winter scenes. To this end, scene geometry that is identified as having a snow material is
considered to be translucent in nature. Thus, snowy objects that are hit by a ray are treated
as having both a local reflection component and as being emissive, with light having been
permeated through the material. The emissive colour is retrieved from the compressed version
of the transmittance database, with the specific curve being determined by the characterization
of the snow sample and the local geometry of the object in relation to a traditional light source
used in a rendering pipeline.
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Figure 5.3: Sketch illustrating the key parameters employed in the incorporation of the
PCASnow material class into the path tracing algorithm. When a ray hits an object, such as a
snow block, associated with the PCASnow material class, the spectral distribution of the light
transmitted through this object is obtained from the transmittance database (Figure 5.4) em-
ploying the distance d travelled inside the material (which corresponds to the thickness h of
the snow sample) and the angle of incidence θ. Note that r⃗1 and r⃗2 represent primary rays,
while l⃗1 and l⃗2 represent secondary rays.

For this application, we chose to employ path tracing [112] to render our images, even
though the method described here can be incorporated into other image synthesis frameworks.
The implementation of the proposed method provides a new material definition class for a
typical path tracing renderer [171]. In the remainder of this section, we will refer to this class
as PCASnow.

When an object associated with the PCASnow material class is hit by a ray, the distance
d travelled inside the material and the angle of incidence θ with respect to the light source
(Figure 5.3) are used in combination with the three snow sample properties (facetness, grain
size and density) in order to determine the spectral light distribution that has been transmitted
through the snow. To index the compressed database, the three snow sample properties, as
well as the sample thickness (represented by the distance d) at the location of interest, and the
angle of incidence (represented by θ) must be known.

For a database of spectral reflectance curves, the thickness parameter (represented by the
distance d) may be omitted if the snow sample is taken to be optically thick. More precisely,
for a scene object with a significant thickness, the simplifying assumption may be made to not
include thickness as an index variable in the spectral reflectance database.

Again, since our primary goal is to demonstrate the predictive reproduction of the bluish
appearance observed when light is transmitted through snow, we concentrate our attention on
the spectral distribution of light transmitted through snow samples, and account for its spatial
distribution implicitly. It is worth noting that the SPLITSnow model (Chapter 4) is capable
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of outputting the BSSDF values [154] since all geometric information, including position and
direction of exitance, are known. Nonetheless, we elected to employ an implicit approach based
on the precomputed transmittance data so that we could further mitigate computational costs.

Referring to Figure 5.3 to schematically illustrate the aforementioned light and material in-
teractions, a primary ray r⃗1 hits an object in the scene. To compute the object’s reflectance,
secondary ray l⃗1 is cast toward a block of snow which indirectly serves as a light source. Sim-
ilarly, a primary ray r⃗2 strikes the snow block directly. For r⃗2, both the reflectance and the
emissive components contribute to the shading.

To compute the spectral appearance attributes for geometric objects whose colours are af-
fected by light transmitted through snow, there are three aspects of the PCASnow material class
implementation to be considered: the snow sample specification, the retrieval of the required
spectral curves and the interpolation between the retrieved curves representing the discrete
samples. These aspects are implemented as indicated in Algorithms 1–3.

Algorithm 1 Pseudocode of the algorithm employed to ini-
tialize the material used to determine the spectral contribution
of light transmitted through snow. In Figure 5.3, this material
is applied to the snow block object on the right.
▷ Initialization of the material (M) using facetness (F), grain
size (gs) and density (D) ◁

M ← new PCASnow(F, gs,D)
▷ Initialization of the scene geometry (G) usingmaterial (M) ◁
G← new SceneObject(M)

To address the first aspect, the Initialization of the Material, the model parameter values
associated with the desired snow sample must be specified when initializing an instance of
the PCASnow material class. More precisely, the facetness, grain size and density must be
provided as parameters to the PCASnow material class instantiation. An example is provided
in Algorithm 1.

As for the second implementation aspect, Indexing of the Transmittance Database, it re-
quires correct indexing into the matrix containing the spectral curves (see Figure 5.4). Recall
from Section 5.2 that the PCA approach produces two matrices, the first of which, C ′, contains
numerous rows, that specify the coefficients to the column basis values stored in the matrix
V ′. Algorithm 2 provides details of our implementation, which computed the row index using
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an elementary array indexing technique. Since there are five dimensions to consider, index re-
trieval is akin to a five-dimensional array index computation. The parameters can be indexed in
any order, so long as the indexing order of the matrix C ′ is consistent with the indexing order
used to create the matrix M , which holds the complete set of computed spectral transmittance
curves. We chose to index first by the grain properties (facetness and grain size), and subse-
quently by the snow sample’s density, then by the geometric properties required for rendering
(sample thickness and the angle of incidence). This strategy ensures that all spectral transmit-
tance curves for each of the samples are contiguous in memory, which allows for the set of
spectra of an entire sample to be cached. Once an index has been retrieved, the selected 1× l′
row C ′

j of the matrix C ′ was multiplied by the l′ × l matrix V ′T to reconstruct the spectra for
that sample.

As mentioned above, this indexing may be performed in any order, so long as indexing
the spectral database is consistent with the indexing order for the matrix M . For the spectral
reflectance database, the same indexing order may be used. However, in the case of the spectral
reflectance database, for scene objects that are sufficiently thick, indexing by thickness may
not be necessary, and this index variable may not be included. Still, the angle of incidence may
potentially be included. This may be in reference to the light that is the source of illumination
on the face of the object where the reflection is being computed.

Algorithm 2 Pseudocode of the algorithm employed to index
the transmittance database.
▷ Indexing of the Transmittance Database ◁
▷ Ray-object intersection point is Xi on scene geometry (G) ◁
d← computeDistanceThroughObject(Xi, G)
Xt ← determineExitPoint(Xi, d)
▷ L is a traditional light source in the scene ◁
θ ← computeAngleToPrimaryLightSource(L,Xt)
▷ Use facetness (F), grain size (gs), density (D), d and θ as
index values ◁

spectra←M [F, gs,D, d, θ]

Next, we address the third implementation aspect, the details of which are provided in Al-
gorithm 3. Namely, the Interpolation of the Spectral Responses. To generate the transmittance
database (and also the reflectance database), we selected a fixed number of angles of incidence
and sample thicknesses. As a consequence, interpolations between angles of incidence and
sample thicknesses were required.
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[F=0.3, g=400, D=250,

 h=15, θ=0]

[F=0.3, g=400, D=250,

 h=15, θ=10]

[F=0.3, g=400, D=250,

 h=15, θ=20]

[F=0.1, g=100, D=200,

 h=1, θ=0]

[F=0.1, g=100, D=200,

 h=1, θ=10]

[F=0.3, g=400, D=250,

 h=15, θ=89]

[F=0.3, g=400, D=250,

 h=25, θ=0]

[F=0.3, g=400, D=250,

 h=50, θ=89]
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Figure 5.4: Indexing layout of the transmittance database with the curves inside the boxes rep-
resenting the stored transmittance database entries (rows of matrix M , Section 5.2). Indexing
is ordered first by facetness (F ), grain size (g) and density (D). Indexing is then ordered by
sample thickness (h) and angle of incidence (θ). This order of indexing ensures that a particular
virtual snow sample is laid out contiguously in memory as indicated by the red bracket. Each
element of this five-dimensional array contains the spectral transmittance values of the curve
for the respective index.
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Algorithm 3 Pseudocode of the algorithm employed to in-
terpolate the retrieved spectral responses. In Figure 5.3, the
results of this interpolation may be used by the primary ray
r2 or the secondary ray l1.
▷ Interpolation of the Spectral Responses ◁
▷ Use facetness (F), grain size (gs) density (D), the sample
thickness (d) and angle of incidence (θ) as index values ◁

▷ ⌊floor⌋and ⌈ceiling⌉ functions denote lower and upper
index values ◁

▷ M represents the PCASnow material class instance ◁
spectrall ←M [F, gs,D, ⌊d⌋, ⌊θ⌋]
spectrahl ←M [F, gs,D, ⌈d⌉, ⌊θ⌋]
spectral ← cubicSpline(spectrall, spectrahl)
spectralh ←M [F, gs,D, ⌊d⌋, ⌈θ⌉]
spectrahh ←M [F, gs,D, ⌈d⌉, ⌈θ⌉]
spectrah ← cubicSpline(spectralh, spectrahh)
spectra← linear(spectral, spectrah)
return spectra

We chose to use cubic spline interpolation to obtain intermediate values between two given
thickness values. These values correspond to the distances travelled, d, by light through the
snow block. Note that the cubic interpolation of distance must be performed between the two
distances for both the low and the high values of θ. We then interpolate linearly between these
two curves, i.e., those that represent the low and high angles of incidence for the cubically
interpolated thicknesses. It is also worth mentioning that the cubic interpolation scheme was
selected due to the reported nonlinear attenuation of light traversing snow samples [184]. Note
that the interpolated spectra are convolved with the relative spectral power distribution of the
traditional rendering light source before it is used in local reflectance calculations or added as
an emissive contribution.

The boundaries adopted for the minimum and maximum angles of incidence, θ, were 0◦ and
89◦. The transmittance spectra associated with any angle of incidence outside these bounds
were assumed to not exhibit any colour. Note that the upper limit of the angle of incidence
was set to 89◦ to avoid numeric computation issues with incident light that is parallel to a
surface. Similarly, the boundaries for the snow thicknesses were chosen to be 0 cm and 100 cm.
Transmittance spectra through a 0 cm snow thickness were assumed to have the maximum
magnitude and eliciting the colour white. On the other hand, transmittance spectra through
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snow thicknesses beyond 100 cm were assumed to be negligible, and thus, resulting in the
colour black.

The spectral reconstructions and visual results of the proposed methods discussed in this
chapter are provided in Chapters 8 and 9. The results of the data analysis and colour swatches
generated using the spectral reconstructions, which serve to highlight specific chromatic as-
pects, are included in Chapter 8. Full colour renderings are presented in Chapter 9.
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Chapter 6

Evaluation Methodology

In this chapter, we discuss the evaluation methodology used to assess the predictability of the
SPLITSnow model proposed in Chapter 4. We also discuss the methodology used to assess the
fidelity of the reconstructed spectral transmittance curves produced for the purpose of render-
ing images which was introduced in Chapter 5.

To address the first aspect, i.e., the predictability, we start with a discussion regarding the
datasets that are employed in the formulation of the SPLITSnow model and provide information
regarding how the datasets are used. We then provide a description of the virtual measurement
procedures we employed. This is followed by a discussion of the parameters we examined
using these measurement procedures. In addition to this, we provide an example of how the
predictability of the SPLITSnow model may be used in the analysis of remotely acquired data.

To address the second aspect, i.e., image synthesis, we begin with a discussion regarding the
methods employed for image synthesis verification. We then consider the spectral resolution
employed for rendering.

Finally, we elaborate on the reproducibility and dissemination of radiometric predictions
provided by the proposed framework.

6.1 Datasets and Data Flow Pertinent for Evaluation

We remark that it is not unusual to compare predictions provided by new models being in-
troduced in the literature with simulated readings obtained using existing models, particularly
when reliable ground truth data is not available. However, reliable measured radiometric data
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Figure 6.1: Datasets and data flow utilized for the evaluation of the SPLITSnow model. Physical
data (e.g., index of refraction) and sample characterization data (e.g., density and thickness) are
fed into the model where the virtual measurement procedure produces data for comparison
purposes. Similarly, in situ measurements of a sample that also include detailed measurements
of the sample characterization allow for more direct comparisons to be made when evaluating
the simulation results.

for snow is available in the literature, albeit from a moderate number of sources (e.g., [54, 169,
190]). Moreover, comparisons of results provided by different models may be more susceptible
to biases associated with the assumptions considered in the design of those models. For these
reasons, we believe that, as in any effort in physical sciences, the ground truth to be used in the
evaluation of a novel light transport model should be actual measured data. Accordingly, we
have elected to evaluate the predictions made by the SPLITSnow model through quantitative
and qualitative comparisons with measured data and experimental observations reported in the
literature.

Figure 6.1 provides an overview of the datasets and data flow affecting evaluation. Physical
data, such as the complex index of refraction, as well as snow sample characterization data are
inputs to the model. The characterization values are constrained to physically valid ranges as
reported in the literature. The model simulates the light interactions with a virtual snow sample
defined by the characterization data, and the virtual measurement procedures (discussed in
Section 6.2 below) produce spectral responses that are used for comparison purposes.

Measured response data obtained from field studies are compared to simulation results.
Similar to the generation of simulated results, having measured characterization traits allows
for better comparisons to be made. Ideally, the measured characterization traits will be used to
guide the input characterization parameters employed for simulation. Furthermore, descriptive
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details regarding the measurement procedure may also impact the comparisons made between
simulated and measured data.

There are two types of comparisons to be made between simulated and measured datasets.
First, quantitative comparisons may be made between the simulated and measured responses,
and evaluation metrics are used to assess the closeness of the two outputs. These provide the
most direct method of comparison. Second, the effects of varying parameter values may also be
reported in the literature. For instance, an increase in the density of a snow sample can affect its
spectral reflectance. We describe such effects as phenomenological trends that are reported in
the literature. Qualitative comparisons are made to evaluate whether the modelling procedure
is capable of predicting the same trends.

6.2 Virtual Measurement Procedures

As discussed in Chapter 4, an in silico experiment is executed by casting rays into a digital
representation of the selected snow sample. Once the ray has escaped from the sample, the
exitance details are recorded using a virtual goniophotometer [124]. With this procedure, the
hemispherical radiometric responses resulting from light interactions with the snow grains are
quantifiable in terms of BSSDF since all geometric values, including positions, of the incidence
and exitance points are known. We note that to enable comparisons with BRDF data reported
in the literature, the separation between incidence and exitance points can be assumed to be
negligible so that the model predictions can also be expressed in terms of BSDF [154].

Considering the directional outputs of the simulation, the upper collection hemisphere of
this virtual goniophotometer is divided into regions of equal solid angle associated with light
sensors (detectors). Since the incident ray is directional, a directional-conical reflectance ex-
periment is undertaken with this type of virtual device. (See Section 2.2.1.) At each detector
location, the ratio of impinging rays to the total number of rays cast by the device is divided
by the projected solid angle, yielding the BRDF (and the BTDF by analogy, i.e., considering the
lower collection hemisphere). By decreasing the solid angle of the virtual collectors, a better
approximation to the true BRDF is achieved at the expense of additional computational cost.
Thus for each wavelength, λ, the BRDF is numerically computed as follows:

fr(θi, ϕi; θr, ϕr;λ) =
nλ (θr, ϕr)

NλΩr (θr, ϕr)
, [sr−1] (6.1)

where nλ (θr, ϕr) is the number of rays striking the collector in the reflected direction on the
virtual goniophotometer, Ωr (θr, ϕr) is the projected solid angle of a given sensor located in
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the same direction, Nλ is the total number of rays cast, and (θ, ϕ) represent the locations in
spherical coordinates [154].

Directional-hemispherical reflectance is a variation of the directional-conical reflectance
where the entire upper hemisphere is used as a single detector. Thus, the sum of the con-
tributions of each detector is equal to the sum for the total upper hemisphere. Hence, the
directional-hemispherical reflectance can be numerically computed as:

ρ(θi, ϕi;λ) =
nrλ

Nλ

, (6.2)

where nrλ is the total number of reflected rays in all directions of the upper hemisphere. Simi-
larly, the directional-hemispherical transmittance can be numerically computed as:

τ(θi, ϕi;λ) =
ntλ

Nλ

, (6.3)

where ntλ is the total number of transmitted rays through the material.
When conducting experiments of light transmission through snow, it is worth mentioning

that light penetration measurements conducted in situ often rely on the insertion of a sensor
probe or measurement device at different depths within a snowpack [184, 189]. Considering the
diffuse (Lambertian) nature of light propagation through snow [24], such a setup may allow for
light that is backscattered from a greater depth to be detected by a sensor placed at a shallower
depth. This can result in a flux reading larger than that of the actual flux transmitted from
the sample’s top boundary to the sensor’s depth. Since we are interested in the EM radiation
reaching to a particular depth, and not the reflected radiation, we employ a different setup.
More specifically, we compute the transmittance values at the indicated thickness (equivalent
to the depth of the samples’ bottom boundary). In other words, once a (light) ray exits a snow
sample at the specified thickness (bottom depth), it is considered permanently propagated by
the snow sample, i.e., it no longer contributes to the sample’s transmittance reading at that
depth.

Our in silico setup for the computation of transmittance as outlined above is consistent with
other setups employed in field measurement campaigns [18]. In some of those setups, the trans-
mittance values were measured using a tunnel to place the measurement device at the bottom
depth of the snowpack [114, 182]. The values for different thicknesses (depths) were recorded
as snow accumulates on a window (port) placed in the top of the tunnel located at snow-soil
interface. In an alternative setup [24], the measurement device was positioned underneath a
snow slab extracted from a snow bank and placed on a metal table especially configured for
that purpose. These setups, albeit more logistically complex, allowed for the measurements to
be performed without disturbing the accumulated snow [24, 114, 182], which, we remark, is
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more likely to happen when sensors are inserted into a snowpack [184, 189]. Lastly, another
arrangement placed a probe on a base before the snowfall season. After a sufficient accumula-
tion of snow, repeated measurements were performed after removing material at regular inter-
vals [169]. Although the sample may be disturbed, this arrangement prevented backscattered
light rays from making a contribution to sensors at shallower depths, which is also achieved by
our in silico experimental setup.

6.3 Data Considerations for Radiometric Comparisons

Recall that, characterization data that are provided along side measurement data are used to
guide our quantitative comparisons. However, complete descriptions of the samples being mea-
sured are uncommon. Therefore, the exploration of the model’s characterization parameter
space is warranted to some extent.

Grain size is one of the most predominantly observed snow grain characteristics found in
the literature since it has a significant effect on reflectance [28, 74, 105, 130, 144, 156, 157]. How-
ever, additional snow grain characteristics are utilized to achieve a better fit with the measured
reflectance data of snow samples. In view of this, we attempted to determine the set of snow
model parameter values that reproduce the spectral reflectance results that were reported in
the literature by Dumont et al. [54], Perovich [169] and Salvatori et al. [190]. The obtained pa-
rameter values are determined by iteratively exploring the model parameter space being sure to
employ values that are within physically valid ranges [29, 60]. Furthermore, all sample charac-
terization data measurements that were recorded as part of the in situ measurement processes
were analyzed and used to limit the scope of the search space of the model’s input parameter
space.

We remark that our quantitative comparisons were complemented by comparisons between
model predictions and trends that have been reported in the literature. The latter include both
reflectance and transmittance changes. For evaluation purposes, several model parameters that
describe the virtual snow sample are subjected to variation. These include grain size, facetness
and density. More specifically, in silico experiments are conducted by varying the individual
parameters, which are assessed against the expected effects on reflectance and transmittance
(i.e., the phenomenological trends) as reported in the literature. In addition to snow grain
attributes, we also investigate the effects of water content, as it has an application in determin-
ing near-surface water saturation of snowpack for remote sensing [53, 74]. Geometric aspects,
including snowpack thickness and the angles of incidence, are also considered.

We then investigate the effect of model parameters on BRDF trends. We qualitatively com-
pare predictions made by changes in grain size and facetness with trends that have been re-
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ported in the literature. Moreover, we test the effect of varying the angle of incidence and the
wavelength of the illumination source. The predictions made by these experiments are also
qualitatively compared to the reported trends.

Note that for spectral studies of reflectance and transmittance, we use the angle of incidence
of 0◦. We remark that controlled studies of spectral reflectance and transmittance trends of par-
ticulate materials often use this angle of incidence. (For example, see Bänninger and Flühler[5],
Ciani et al. [40], Dumont et al. [54], and Nakamura et al. [144].) However, when investigat-
ing directional trends, it is more common to find studies in the literature where the angle of
incidence is varied. We follow this strategy of varying the angle of incidence when making
comparisons to trends observed with a directional component.

While in situ and laboratory experiments that quantify directional reflectance data are fun-
damentally important, sometimes there are geometric limits on the incidence and reflectance
angles to be measured depending upon the apparatus design. With an in silico experiment,
there are no such limitations. Furthermore, the effectiveness-to-cost ratio of investigations can
be improved by pairing traditional and in silico experiments since the latter enables a precise
control of the parameters under study. However, while distinct polar angles of incidence are
considered in this investigation, we fix the azimuthal angle at 0◦. We remark that SPLITSnow
is a local light interaction model. Accordingly, macroscopic features like sastrugi [95] and wind
effects [137], that can lead to an azimuthal asymmetry of light propagated by snowpacks cov-
ering relatively large areas, are outside our current scope of simulations.

We also remark that the spectral indices of refraction and extinction coefficients of water
and ice are incorporated in the formulation of the SPLITSnow model (see Chapter 4). Thus, in
our simulations, we employ spectral curves (Figure 6.2) obtained from the literature on these
optical properties of water [83, 164, 174, 223] and ice [230].

As briefly mentioned earlier, we quantitatively compare spectral reflectance values obtained
using the SPLITSnow model with spectral reflectance values measured by Dumont et al. [54]. It
is worth noting that they chose to perform the bulk of their analyses on their Sample 3 which,
according to them, provided results consistent with those obtained for their other samples.
Therefore, we evaluate SPLITSnow simulated results through comparisons with measurements
obtained from this sample. We will refer to the virtual snow sample with parameter values used
to reproduce the reflectance curve of this measured dataset as the representative sample in the
remainder of this work, and we consider these characterization parameter values to be suitable
for use as baseline parameter values in our experiments.

For their analyses of reflectance, Dumont et al. [54] employed a sample container that was
cylindrical with a 15 cm radius and 12 cm depth. However, they used a cuboid sample holder
that was 16.5 cm deep to determine their radiometric bottom losses, which were found to be
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Figure 6.2: Complex index of refraction curves for both water [83, 164, 174, 223] and ice [230]
used in this work. The real part of the index of refraction for water and ice are denoted by blue
solid and green dashed lines respectively. The imaginary part of the index of refraction (i.e., the
extinction coefficient) for water and ice are denoted by red dash-dotted and orange dotted lines
respectively. The vertical scale for the real part of the index of refraction is linear, while the
vertical scale for the imaginary part of the index of refraction is logarithmic.

less than 1%. Since transmittance is also an output of the SPLITSnow model, we were able to
verify that its bottom losses are similar to those reported by Dumont et al. [54]. For these direct
comparisons, we consider a spectral resolution of 10 nm in our simulations, which is sufficient
to describe spectral features present in the actual measured data of the representative sample
that was captured using the same or a coarser resolution [54].

In addition, we provide quantitative comparisons to datasets provided by Salvatori et al. [190].
We remark that whereas Dumont et al. [54] provided goniometric data of the measured samples,
Salvatori et al. [190] provided only spectral reflectance factor data. Although the characteriza-
tions of the measured samples in the Snow & Ice Spectral Library 2.0 (SISpec) database [190]
are often more complete than the characterization data provided by Dumont et al. [54].

These two datasets [54, 190] only provide reflectance data. Undoubtedly, experimental stud-
ies of transmittance of light through snow are scarce in the snow literature [24, 68, 169]. This
scarcity may be explained by the intrinsic limitations of in situ measurements, which are dif-
ficult to conduct [70]. For instance, while attempting to place sensors within a snow layer,
one may inadvertently disturb the structure of the snowpack [184, 189], which may affect the
measurements’ reliability [55], or because back scattering and the detour effect allow for light
transmitted beneath the sensor to affect the measurement. (See Section 6.2.) To our knowledge,
the transmittance studies available in the literature were all performed in the field and were
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affected by impurities [169], morphological changes [68] or variations in solar radiation [24].
In light of these considerations, we elected to make a comparison with transmittance data pro-
vided by Perovich [169]. More specifically, a comparison is made to his “January 18” sample,
which we abbreviate as P18.

As outlined above, to further assess the predictability of the proposed model, we quali-
tatively evaluate it by examining the impact that various snow grain sizes have on simulated
results, as well as other snow characterization parameter values. For example, experimental ev-
idence suggests that reflectance decreases as grain size increases [28, 144]. In silico experiments
pertaining to other characterization parameters such as facetness, water content and density,
are also conducted. We also investigate similar spectrometric trends regarding transmittance
and qualitatively compare our findings with observations reported in the literature. Lastly, we
conduct directional-hemispherical reflectance experiments to assess the predictive capabilities
of the SPLITSnow model with respect to radiometric responses of multi-layered samples (Sec-
tion 4.4), heterogeneous samples (Section 4.5) and samples containing black carbon and brown
carbon impurities (Section 4.6).

Such systematic investigations usually require specific variations in selected snowpack char-
acteristics while the others are kept fixed. This control is difficult to be achieved under field
conditions in which the changes are elicited by environmental factors that may affect multiple
of those characteristics of the snowpack simultaneously [41]. While such controlled experi-
ments can be attempted under laboratory conditions, usually artificially prepared snow samples
lack the morphological diversity (e.g., different grain sizes and shapes) found in natural sam-
ples [190], which limits the scope of the observations that can be derived from their outcomes.
Moreover, experiments involving light transmission on scattering materials conducted under
field or laboratory conditions have to face another challenging aspect, namely the control of
incident illumination [24].

As noted by Bänninger and Flühler [5], there are optical similarities between snow and other
granular materials. As such, the effects of varying particular snow grain parameter values on
transmittance for snow can be assessed by examining the transmittance profiles of other gran-
ular materials (e.g., sand) from a qualitative perspective. For example, as the thickness (depth)
of the deposits of these materials increases, the transmittance decreases [5, 40]; as grain size
increases, the transmittance increases [5, 40, 208]; and as porosity increases (i.e., density de-
creases), the transmittance increases [159, 238]. Accordingly, we perform transmittance exper-
iments in which we assess the proposed model’s predictive capabilities with respect to these
aspects.

The incorporation of facets in the formulation of the proposed model allows it to efficiently
represent complex grain features which are relevant [53] when considering the angular details
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of snow reflectance for remote sensing [104]. We perform in silico goniometric reflectance
experiments, which we qualitatively compare with field observations reported in the literature,
to illustrate this aspect. For example, a decrease near nadir and an increase in forward direction
(with respect to the scattering limb) are observed in the simulated results. Both effects are
described in the literature [54, 95, 119]. An increased polar angle of incidence is associated
with a stronger forward peak [54, 95, 137]. Finally, smaller grains exhibit a stronger forward
peak when compared to larger grains [54].

In this work, we primarily consider the snow temperature to be -1◦C since the temperature
of snow is typically near its melting point [60]. Furthermore, simulations in which we varied
only the ice temperature in the range of -40–0◦C showed little difference in reflectance.

6.4 Analysis of Remotely Acquired Data

In this section, we outline the evaluation of the predictive capabilities of the proposed frame-
work with respect to remotely acquired data. It consists in comparing simulated reflectance
curves with reflectance data obtained by the Airborne Visible-Infrared Imaging Spectrometer
— Next Generation (AVIRIS-NG) instrument [75, 86]. This instrument is a spectrometer that
takes readings in the visible and IR domains from 380–2510 nm with a 5 nm spectral resolution.
The instrument is fixed to an aircraft. For each “flight” a 600 pixel wide image is captured across
the length of the flightpath. Each pixel contains a complete spectral reading of solar illumina-
tion reflected from the surface below. The data are freely available on the AVIRIS-NG website.1
In addition to the spectrometric data, each pixel also contains geographic information.

The simulated values are obtained using the SPLITSnow model (Chapter 4) and compared
against values obtained from selected pixels from flight line ang20160217t074158, which was
captured over the mountainous state of Himachal Pradesh, India. This flight line was chosen
due to the abundance of snow and since cloud conditions were listed as clear. The solar altitude
at the time of the flight was 27.7◦, or 62.3◦ away from the vertical.

Selecting a mountainous region introduces a challenge to the study of reflectance since
the slope of the terrain affects the angle incidence of the light from the sun. To compensate
for this, we use the estimated elevation data provided in the dataset to compute the gradient
(which quantifies the rate of change of elevation) for each pixel. These gradients are then used
to find a 5× 5 pixel area exhibiting little horizontal and vertical change in elevation.

1https://avirisng.jpl.nasa.gov/

71



6.5 Reconstructed Data Verification

In Chapter 5, we describe the process employed to generate images depicting snow appear-
ance attributes, notably those associated with the bluish colour that is observed when light is
transmitted through snow. Recall from Section 5.2 that principal component analysis (PCA)
compresses the transmittance database by selecting a value for l′ ≪ l to reduce the dimension-
ality of the database. To evaluate the choice of l′, we compare the reconstructed spectral curves
against the original database of transmittance spectral curves, M .

We use two metrics to evaluate the quality of the spectral reconstructions. First, we calculate
the root mean squared error (RMSE) between spectral curves in the transmittance database and
the reconstructed curves. Second, we determine the coordinates for the original transmittance
curves and their respective reconstructions in the CIELAB colour space2 in order to quantify
the perceptual differences between the two representations [204].

We test various quantities of principal components (i.e., values of l′), reconstruct the com-
plete set of spectra using the reduced number of components, and compare the reconstructions
with the transmittance database. First, we compare the RMSE between each transmittance
curve and the associated reconstructed curve. The RMSE is computed using the formula:

RMSE =

√√√√ 1

n

n∑
j=1

(
τ j − τ̂ j

)2
, (6.4)

where τ j is the transmittance value for jth wavelength, τ̂ j is the reconstructed transmittance
value for the same wavelength and n is the number of spectral samples. (Note that the RMSE
can also be computed for spectral reflectance responses by replacing τ j and τ̂ j with ρj and ρ̂j ,
respectively.)

Although computing the error between two spectral curves provides insight into their rel-
ative difference, it does not provide a measure of the visual similarity for human observers.
To achieve that, the second metric we employ involves the computation of the perceptual dif-
ferences using device-independent International Commission on Illumination (CIE)-based dis-
tances. More specifically, we compute the Euclidean distances in the CIELAB colour space,
which provides a quantifiable measure of visual difference for an average human observer [204].

To obtain the CIELAB differences, we first compute the CIEXYZ tristimulus values3 by per-
forming a multiplication of the spectral curve with the illuminant’s relative spectral power

2CIELAB is a colour space that represents colours so that the relative distances between colour coordinates
quantifies the relative difference between the two colours for an average human observer [204].

3CIEXYZ is a colour space that represents colours using three tristimulus coordinates, X , Y and Z , that are
based on the stimuli experienced by a standard human observer [204].
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distribution and the spectral response of the human photoreceptors [85, 93]. We chose to em-
ploy the standard CIE D65 illuminant (average daylight) for this purpose [96]. We then convert
the XYZ tristimulus values into the CIELAB colour space using standard techniques [33]. Fur-
ther details regarding the process of determining the trichromatic colour values for a spectral
distribution can be found in a standard text such as that by Stone [206].

The conversion to CIELAB coordinates is performed for both the reconstructed and the
original transmittance spectral curves. Once the CIELAB representations for the curves are
obtained, the CIELAB differences are computed using the formula:

∆E∗
ab =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2, (6.5)

where ∆L∗, ∆a∗ and ∆b∗ are the differences between the respective L∗, a∗ and b∗ coordinates.
In this work, we select the smallest number of principal components (i.e., the smallest value

for l′) whose reconstructions yield a maximum perceptual difference below 2.3, which corre-
spond to the experimentally determined perceptibility threshold for an average human observer
[131, 204].

Finally, we provide a visual representation of this perceptual difference result. Namely, we
generate colour swatches for the samples with the two greatest perceptual differences. More
precisely, we use the same aforementioned multiplication process to compute the CIELAB co-
ordinates, except that the final transformation is into the sRGB colour space [33, 93, 206]. For
consistency, we employ the CIE D65 standard illuminant as indicated before [96]. For illus-
trative purposes, we modulate the swatches with an achromatic texture that approximates the
macroscopic features of the snow samples as observed after light has been transmitted through
a thickness of the material.

6.6 Spectral Resolution for Rendering

We note that the spectral resolution and the choice of illuminant can have a significant impact
on the results of the multiplication process outlined in the previous section. In order to render
images, we employ the completely reconstructed spectra (31 spectral samples), rather than tris-
timulus values (three spectral samples). This choice was based on the importance of spectral
information for the rendering of real world materials [106].

To illustrate this aspect, we generated swatches for a given snow sample through the multi-
plication process of selected illuminants’ spectral power distributions (Figure 6.3 (top)), the sam-
ple’s transmittance curve (Figure 6.3 (middle)) and the broad spectral responses of the human
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Figure 6.3: Components of the multiplication process employed to generate swatches for a
backlit snow sample characterized by a mean grain size, facetness, thickness, and density equal
to 400 µm, 0.3, 15 cm, and 300 kgm−3, respectively. Top: plots of the relative spectral power
distributions of selected CIE illuminants (E, D55, D65, LED-B5, and FL-15) [37]. Middle: trans-
mittance curve computed for the snow sample considering an angle of incidence of 0◦. Bottom:
snow swatches generated using different numbers (n) of wavelengths, namely 3 (455, 551, and
608 nm) and 31 (equally spaced in the 400-700 nm interval).
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photoreceptors [85, 96]. This last step was performed using a standard CIEXYZ to sRGB colour
system conversion procedure [14] and considering the CIE standard illuminants E (equal en-
ergy), D55 (5,500 K daylight), D65 (6,500 K natural daylight), LED-B5 (phosphor-type LED #5),
and FL-15 (fluorescent type 15) [37]. As a final step, we applied an achromatic texture to present
the obtained colours on the swatches (Figure 6.3 (bottom)).

The swatches shown in Figure 6.3 (bottom) were generated using the multiplication process
outlined in Section 6.5. Those in the top row were obtained using only three sample wavelengths
(455, 551 and 608 nm), which correspond to the chromaticity coordinates of standard Society of
Motion Picture and Television Engineers (SMPTE) monitors [14]. The swatches in the bottom
row depict the same snow samples generated using 31 sample wavelengths. It can be observed
that there is a noticeable difference between the swatches obtained using tristimulus values and
those obtained using 31 samples taken across the visible spectrum.

By visually inspecting the swatches shown in Figure 6.3 (bottom), it can also be noted that
the choice of illuminant can have a significant impact on the depicted colourations. Nonethe-
less, examining the swatches generated using a flat, equal energy light source (illuminant E),
one can verify that the colourations are still largely dependent on the transmittance values.

It is worth noting that, depending on the spectral characteristics of a given illuminant, it
may be possible to employ less than 31 equally-spaced spectral samples and still maintain the
visual fidelity of the generated swatches. However, in order to determine the ideal number and
location of spectral samples for a given illuminant, one may need to employ a perceptually-
based approach similar to that proposed by Kravchenko et al. [123].

6.7 Reproducibility and Dissemination

We have made the SPLITSnow model available for online use (both spectrometric [146] and
goniometric [145] versions) to enable the reproduction [168] and extension of the in silico ex-
periments described in this thesis. Its deployment was carried out using a model distribution
framework [6] designed for this purpose. Both graphical and numerical results are returned via
email to the user for subsequent analysis. In addition, we have also provided online access to
the supporting data (complex indices of refraction, etc.) used in our investigation [147].

The default values assigned to the snow parameter values depicted on the model’s web page
(Figure 6.4) correspond to the representative sample, i.e., the values used to make comparisons
with Sample 3 provided by Dumont et al. [54]. However, a variety of reasonable values are
permitted for the parameters for the assessment of different phenomenological observations.
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Figure 6.4: Screenshot of a user interface (UI) deployed to enable the use of SPLITSnow model
(Chapter 4) in simulations of light interactions with snow samples that may contain impurities.
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Note that Figure 6.4 depicts the UI for the spectrometric mode of the SPLITSnow model.
The UI for this mode of the model was selected for clarity since the main snow characterization
parameters are present. Other modes of the model formulation are also available for online
use upon request. These include the spectrometric modes that facilitate both heterogeneous
and multi-layer use cases, as well as the goniometric mode. The heterogeneous spectrometric
mode [148] allows for up to three grain types to be specified within a snow sample, whereas
the multi-layer spectrometric mode [149] allows for snow samples consisting of up to four lay-
ers. Finally, the goniometric mode [145] allows for experiments to be conducted with spatially
distributed values.
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Chapter 7

Spectrometric and Goniometric Results

In this chapter, we compare the simulated results generated by the proposed SPLITSnow model
with measured data provided by Dumont et al. [54], Salvatori et al. [190] and Perovich [169]. As
outlined in Chapter 6, we also present the results of our in silico experiments that make compar-
isons to spectrometric reflectance and transmittance trends and evaluate these against observed
trends that have been previously reported in the literature. We then provide our in silico ex-
perimental simulation results that make predictions of goniometric trends and compare these
against the measured responses reported in the literature. Finally, we present an example use
case of the proposed framework where we make comparisons between modelled data and data
that has been acquired remotely.

7.1 Quantitative Spectrometric Comparisons

Figure 7.1 presents a graph depicting a comparison of model predictions with measured data
provided by Dumont et al. [54] (for their Sample 3) considering an angle of incidence of 0◦. A
detailed characterization of the snow grain size for the sample was not provided by Dumont
et al. [54] along with their measured data. However, in their own comparisons to previous
models, they used average grain sizes ranging from 100–1000 µm, and stated that their own
“grain size measurements are too rough to be suitable as inputs.” Furthermore, based on the
description of their samples, it has been inferred that the measured sample’s grains are within
this range.

As it can be observed in Figure 7.1, a close agreement has been achieved for reflectance
throughout the entire measured spectrum (400–2500 nm). The computed RMSE between the
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Figure 7.1: Comparison of measured and simulated directional-hemispherical reflectance
curves. The measured curve was provided by Dumont et al. [54] (for their Sample 3). The
simulated curve was obtained using the SPLITSnow model and the parameter data values pro-
vided in Table 7.1.

two curves is 0.0177. It has been noted by Jacquemoud et al. [98], that RMSE values below 0.03
indicate good spectrum reconstruction, notably for remote sensing applications. In addition,
note that prominent maxima are aligned. In particular, alignment is observed at the 1030 nm
maxima. This suggests that the fraction of the pore space occupied by water that was used in
the simulation (0.05) is consistent [74] with the residual water in their Sample 3.

The model parameter values employed to obtain these results are presented in Table 7.1.
Values in the top portion of the table represent those that were explored experimentally to
achieve the closest congruence with measured data. Values in the lower section of the table were
directly stated by Dumont et al. [54]. A summary of how these values were selected is presented
in Appendix D. However, some aspects of the process are provided here for illustrative purposes.

As described in Chapter 4, facetness is a unitless parameter that is used to model the fine
details of the grains’ rough surface. The description of the sample provided by Dumont et al. [54]
indicates that it consisted of “rounded grains and mixed forms.” Based on this description, the
exploration of the parameter space focused on rounded grains. Best results were obtained using
a normal probability distribution with a mean facetness of 0.3 and a standard deviation of 0.072.
These values produce mostly smooth grains with some facets in the SPLITSnow formulation.

The differences between the measured and simulated curves are more pronounced in the
400–800 nm region of the spectrum. There is a number of possible explanations for these dif-
ferences. First, relatively small amounts of impurities, as low 1 part per million, can reduce

80



Parameter Value Units
Particle size minimum 300 [µm]
Particle size maximum 750 [µm]
Water saturation 0.05
Facetness minimum 0.2
Facetness maximum 0.4
Facetness mean 0.3
Facetness standard deviation 0.072
Sphericity minimum 0.6
Sphericity maximum 0.95
Sphericity mean 0.798
Sphericity standard deviation 0.064
Density 0.275 [g cm−3]
Temperature -1 [◦C]
Sample thickness 12 [cm]
Polar incidence angle 0◦
Wavelength range 400–2500 [nm]

Table 7.1: SPLITSnow parameter values employed in the characterization of the representative
snow sample considered in the in silico experiment to generate the reflectance curves depicted
in Figure 7.1. Values used in the upper section were found through parameter exploration.
Values in the lower section correspond to the snow sample used in the actual experiments [54].

hemispherical reflectance by 5–15% [232]. Although Dumont et al. [54] stated that their sample
was taken from a relatively isolated location, they did not rule out the presence of contami-
nants from nearby sources (e.g., vehicular traffic) or deposited from atmospheric air currents,
that could have affected the measurement results. Second, we remark that in the absence of pre-
cise information, the values assigned to a number of the sample characterization parameters
correspond to average data provided in the literature.

We remark that Dumont et al. used a 16.5 cm thick sample to estimate the bottom losses in
the description of their methodology [54], which they found to be less than 1% at the 630 nm
wavelength. However, their experiments were conducted using samples that were only 12 cm
thick. Simulated results obtained using the SPLITSnow model also indicate that approximately
1% of EM radiation is transmitted at the 630 nm wavelength for a 16.5 cm thick sample. How-
ever, the bottom losses are 2% for the same virtual sample that is only 12 cm thick.
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Figure 7.2: Comparison of measured and simulated directional-hemispherical reflectance
curves. The measured curve corresponds to SISpec Sample 195 [190]. The simulated curve
was obtained using the SPLITSnow model and the parameter data values provided in Table 7.2.

In addition to the experiment involving the representative sample, we also conducted an
experiment to match a spectral dataset provided in the SISpec database [190]. Besides pro-
viding spectral data in the visible (≈ 400–780 nm) and the IR (≈ 780–2500 nm), this dataset
also includes spectral measurements in the UV (≈ 350–400 nm). Figure 7.2 presents the re-
flectance dataset from the SISpec database [190] (SISpec Sample 195) along with reflectance
values produced by simulation. The parameter values used to produce the simulation curve are
presented in Table 7.2 and Table 7.3 provides numerical comparison data between the measured
values and the values produced by simulation. The RMSE values were computed for the UV-A
(≈ 350–400 nm), visible (≈ 400–780 nm) and IR-A (≈ 780–1400 nm). The RMSE error values are
below the target value of 0.03 [98] as discussed above. Note that due to the noise in the measured
data (possibly from atmospheric water vapour [65, 86]), the total RMSE excludes wavelengths
between 1750 nm and 2000 nm and wavelengths greater than 2350 nm. Excluding these values
the RMSE is 0.016, which indicates a good agreement between the two curves [98].

We remark that the results presented in Figure 7.2 demonstrate an improved agreement in
the visible range (≈ 400–780 nm) of the EM spectrum, when compared to Figure 7.1. Whereas
the measured dataset presented in Figure 7.1 was collected in continental Europe [54], the
SISpec dataset presented in Figure 7.2 was collected at high latitudes in the Arctic on the Sval-
bard archipelago, where the samples were less susceptible to the presence of impurities.

Although the measured dataset presented in Figure 7.1 was collected by Dumont et al. [54]
in a relatively remote region of the French Alps (Col de Porte), amenities and roads do sur-
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Parameter Value Units
Particle size minimum 150 [µm]
Particle size maximum 800 [µm]
Water saturation 0
Facetness minimum 0.1
Facetness maximum 0.4
Facetness mean 0.25
Facetness standard deviation 0.1
Sphericity minimum 0.9
Sphericity maximum 0.97
Sphericity mean 0.935
Sphericity standard deviation 0.05
Density 340 [kgm−3]
Temperature -3 [◦C]
Sample thickness 10 [cm]

Table 7.2: SPLITSnow parameter values employed in the characterization of the snow sample
considered in the in silico experiments resulting in the simulated reflectance curve depicted in
Figure 7.2. The angle of incidence is 0◦ and the wavelength range is 350–2500 nm.

Spectral Domain Value
UV-A 0.009
Visible 0.005
IR-A 0.021
Total 0.016

Table 7.3: RMSE values comparing the measured [190] and simulated curves in Figure 7.2 for
various spectral ranges. Namely, the UV-A (≈ 350–400 nm), visible (≈ 400–780 nm), IR-A
(≈ 780–1400) and total (350–2500 nm). Note that the RMSE calculation for Sample 195 excludes
the noise (possibly from atmospheric water vapour [65, 86]) observed in the measured data, for
wavelengths near 1800 nm and 2400 nm.
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Figure 7.3: Comparison of measured and simulated directional-hemispherical reflectance
curves. The blue solid curve represents the measured data (SISpec Sample 197 [190]). The
red dashed curve was produced using the SPLITSnow model and did not account for any im-
purities. The green dotted curve was produced using the SPLITSnow model but did account
for black carbon impurities. Both simulated curves used the parameter data values provided in
Table 7.4.

round the region. Furthermore, no attempt was made to quantify the impurities that may
have been present in their sample. As stated previously, even trace amounts of impurities may
have a dramatic effect on snow reflectance [232], and the effect is mostly in the visible domain
[190, 228, 229].

Pursuant to this, we present experimental results that account for the presence of impuri-
ties in snow as described in Section 4.6. This experiment presents a comparison to measured
reflectance values provided by Salvatori et al. [190]. To begin, we conducted an exploration
of the characterization parameter space employed by the SPLITSnow formulation with the in-
tention of finding parameter values that would yield close agreement between the measured
reflectance curve associated with SISpec Sample 197 and the resulting modelled curve. (See
Appendix D for details regarding the parameter selection process.) These parameter values are
presented in Table 7.4, and the results are presented in Figure 7.3. They show that the modelled
reflectance values in the visible domain (≈ 400-700 nm) were noticeably higher. We found that
the addition of a small quantity of black (inorganic) carbon (6 ng g−1) was sufficient to lower
the reflectance in this domain and yield a closer agreement.

In Figure 7.3, the blue solid curve represents the measured data provided in the SISpec
database for Sample 197 [190]. The red dashed curve was produced using the SPLITSnow model
and the characterization parameter values in Table 7.4, except that no impurities were included.
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Parameter Value Units
Particle size minimum 400 [µm]
Particle size maximum 1000 [µm]
Water saturation 0
Facetness minimum 0.2
Facetness maximum 0.4
Facetness mean 0.3
Facetness standard deviation 0.1
Sphericity minimum 0.6
Sphericity maximum 0.95
Sphericity mean 0.8
Sphericity standard deviation 0.07
Density 300 [kgm−3]
Temperature -1 [◦C]
Sample thickness 19 [cm]
Polar incidence angle 0◦
Wavelength range 350–1500 [nm]
Mass Absorption Efficiency 16.619 [m2 g−1]
Reference Wavelength 880 [nm]
Angstrom Exponent 1
Content 6 [ng g−1]
Sedimentation Fraction 1.0

Table 7.4: SPLITSnow parameter values employed in the characterization of the snow sample
considered in the in silico experiment to produce Figure 7.3. Values used in the upper section
were determined by examining the profile diagram associated with the measured data, and by
conducting a parameter space search, as discussed in Section 7.1. Values in the lower section
correspond to those used for black (inorganic) carbon [103, 178, 179].

The green dotted curve was also obtained using the SPLITSnow model and the parameter values
in Table 7.4 with black carbon impurities included in the virtual snow sample. We remark that
the addition of black carbon primarily affects values in the visible domain (≈ 400–700 nm),
while the impurities’ impact on the spectral response in the IR domain (≈ 700–1500 nm) is
significantly lower. These results are consistent with those discussed in Section 4.6. Namely,
that impurities primarily affect the visible wavelengths of EM spectrum [190], whereas the size
and shape of the snow grain have a greater affect in the IR wavelengths [50].
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Figure 7.4: Comparison of measured and simulated directional-hemispherical transmittance
curves. The measured curve corresponds to transmittance values measured by Perovich [169]
for a wet snow sample. The simulated curve was obtained using the SPLITSnow model and the
parameter data values are provided in Table 7.5.

In Table 7.4, the parameter values in the upper portion of the table correspond to the
SPLITSnow parameters used for pure snow. We note that these parameter values are based on
those provided in the description of the measured snow sample [190]. The parameter values in
the lower half of the table correspond to those used for black (inorganic) carbon [103, 178, 179].
A quantity of 6 ng g−1 (or 6 parts per billion by mass1) was sufficient to reduce the reflectance in
the UV (≈ 350–400 nm) and visible (≈ 400–700 nm) domains. For this experiment, we made the
assumption that the black carbon existed as sedimentation. We computed the RMSE between
the two curves representing the measured values for Sample 197 and the simulated results us-
ing the parameter values including black carbon. The calculated value, 0.011, indicates a good
agreement [98].

To assess the ability of the proposed model to predictively reproduce spectral transmittance
values of light permeating through snow, we now present the results of an experiment that
makes comparisons to measured data provided by Perovich [169]. More specifically, we com-
pare simulation results against the transmittance data acquired by Perovich in 1996 on January
18th, which we refer to as P18. (See their Figure 7(b).) On this date, the snow sample measured by
Perovich was 11 cm thick and consisted of rounded grains measuring 500–1000 µm in diameter.
The density varied throughout the sample between 300 kgm−3 and 439 kgm−3, and the sample
was described as being “saturated.” Lastly, Sample P18 was measured near Hanover, NH, USA,
where there were “probably more contaminants in the snowpack than in the isolated polar re-

1We remark that 6 ng g−1 is within the reported ranges employed for impurities found in snow [228].
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Parameter Value Units
Particle size minimum 500 [µm]
Particle size maximum 1000 [µm]
Water saturation 0.18
Facetness minimum 0.1
Facetness maximum 0.3
Facetness mean 0.2
Facetness standard deviation 0.1
Sphericity minimum 0.7
Sphericity maximum 0.95
Sphericity mean 0.85
Sphericity standard deviation 0.1
Density 300 [kgm−3]
Temperature -1 [◦C]
Sample thickness 11 [cm]
Polar incidence angle 0◦
Wavelength range 400–900 [nm]
Mass Absorption Efficiency 16.619 [m2 g−1]
Reference Wavelength 880 [nm]
Angstrom Exponent 1
Content 5 [ng g−1]
Sedimentation Fraction 0.5

Table 7.5: SPLITSnow parameter values employed in the characterization of the snow sample
considered in the in silico experiment to produce Figure 7.4.

gions,” and their own findings suggested the “presence of contaminants in the snow” [169]. The
results of this experiment are presented in Figure 7.4 and the parameter values used to produce
the simulation results are provided in Table 7.5.

In Figure 7.4, the blue solid curve represents the transmittance values measured by Per-
ovich [169] for a wet snow sample. The red dashed curve was produced using the SPLITSnow
model. The RMSE between the two curves was computed to be 0.002. To obtain the of param-
eter values employed to produce the simulated curve, we used the specific values provided by
Perovich [169] in his description of the sample, namely grain size and sample thickness. We
then conducted a search of the parameter space to obtain a match, employing other sample
characterization information provided by Perovich as starting points. More details about the
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Figure 7.5: Comparison of measured [54] data points and a simulated BRDF curve through
the principal plane. A wavelength of 600 nm and an angle of incidence of 30◦ were employed
to allow for comparisons between the simulated curve (blue solid line) and the data points
(blue squares) provided by Dumont et al. [54]. The remaining parameter values are provided
in Table 7.1. The direction of incidence for both measured and simulated data is indicated as a
black solid (straight) line.

selection of parameter values for the sample considered in this experiment can be found in
Appendix D.

To conclude this section we make a direct comparison to a dataset that includes spatially
varying reflectance values. For this, we return to the dataset provided by Dumont et al. [54]. The
results are presented in Figure 7.5. This figure presents both a simulated BRDF plot through the
principal plane2 (blue curve) and measured values provided by Dumont et al. [54] (blue squares)
with respect to their Sample 3, which is the same sample used as a basis of the representative
sample. The angle of incidence (30◦, black straight line) is the same for both measured and
simulated values. Due to the mechanical nature of the apparatus [35] employed to conduct
the measurements, the value at 30◦ could not be measured [54]. However, we remark that the
simulated values adhere to the measured values obtained by Dumont et al. [54].

7.2 Qualitative Spectrometric Comparisons

In this section, we focus on phenomenological trends that have been described in the literature
and assess how the model proposed in Chapter 4 can reproduce them when input parameters are
varied. First, we examine spectrometric reflectance trends, then spectrometric transmittance
trends and finally goniometric (BRDF) trends.

2The principal plane is a slice through a 3D dataset that includes the illumination source and the normal to the
surface.
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Figure 7.6: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering various sizes of snow grains (100–500 µm) and an angle of inci-
dence of 0◦. The remaining sample characterization parameter values are provided in Table 7.1.

7.2.1 Reflectance Trends

In this section, we present the results of our in silico experiments that examine the spectral
distribution of EM radiation that is reflected in the upper hemisphere above the surface of a
virtual snow sample. Unless otherwise stated, all parameter values correspond to those depicted
in Table 7.1, which correspond to the representative sample, except for the independent variable
under test.

The first experiment addressed the effect of grain size on reflectance. Figure 7.6 shows the
results. Reflectance was computed for four different mean grain sizes. The reported mean grain
sizes are all chosen to be the centre of a uniform distribution within a range of ±50 µm. As
reported in the literature [28, 144], reflectance decreases as grain size increases. This behaviour
is observed in the modelled curves presented in Figure 7.6. Sensitivity to grain size is the lowest
in the visible domain, and prominent in the 700–1300 nm band as expected [156]. Furthermore,
the effect of the absorptance minima of ice [230] at 1800 nm and 2250 nm can also be observed
in the modelled curves depicted in Figure 7.6.

The second experiment addressed the effect of facetness on reflectance. We remark that pre-
cipitated snow will undergo a morphological process that erodes the facets and leaves smooth
grains [41]. In the SPLITSnow formulation, a low facetness represents a grain whose surface
has few crystalline features, with a facetness of zero yielding a perfectly smooth grain. A high
facetness characterizes a grain whose surface has many fine details. Figure 7.7 demonstrates

89



500 1000 1500 2000 2500

Wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e
fl
e
c
ta

n
c
e

0.1

0.3

0.9

Figure 7.7: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering various degrees of facetness (0.1–0.9) and an angle of incidence
of 0◦. The remaining parameter values are provided in Table 7.1.

the effect of facetness on reflectance. This experiment shows that an increase in facetness will
increase the total reflectance. Note that the 700–1300 nm band that is affected by grain size [157]
is also affected by the microstructure of the grains. The 1800 nm and 2250 nm peaks exhibited
in the infrared are similarly affected. These trends demonstrate the importance of accounting
for grain facets in the formulation of a model for snow reflectance. In particular, any attempt to
estimate grain size from reflectance (e.g., [157]) can be improved by also examining the effect
of facetness at these peaks.

Our third experiment investigates the effect of density on reflectance. Reflectance is known
to be weakly dependent upon snowpack density when the thickness is effectively semi-infinite.
Bohren and Beschta [29] observed a reflectance variation of less than 1% after compaction in
the 350–2800 nm range. Our in silico spectrometric reflectance experiment reproduces this
result. Using the parameters from Table 7.1 with the minimum (300 kgm−3) and maximum
(450 kgm−3) densities reported in their study, the difference between the two reflectance curves
are presented in Figure 7.8. The RMSE is less than 0.007 and the mean percent difference is 2.0%,
which is similar in magnitude to the experimental results obtained by Bohren and Beschta [29].

As discussed in Section 4.4, the SPLITSnow framework supports snowpacks consisting of
multiple layers. It has been documented in the literature that the surface layer of a snowpack
heavily influences the spectrometric distribution of light [190]. To this extent, often only the
surface layer is reported in the characterization of snow samples [191]. Figure 7.9 demonstrates
this trend. The solid blue curve was produced using the SPLITSnow framework and a single
layer of snow that is composed of large, smooth, highly spherical snow grains. (See Table 7.6.)
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Figure 7.8: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering two different densities (300 and 450 kgm−3) and an angle of
incidence of 0◦. The remaining parameter values are provided in Table 7.1.
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Figure 7.9: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model for virtual snowpacks formed by one (basal layer only) and two (basal layer
covered by a fresh snow layer) snow layers. The blue solid curve corresponds to the single-
layered snowpack consisting of large, smooth snow grains with a spherical shape that is 15 cm
thick. The red dashed curve corresponds to the two layered sample with a 1 cm layer of small,
faceted and elongated snow grains placed on top of the same basal layer. Parameter values
employed to generate the curves depicted in this figure are presented in Table 7.6.
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Parameter Basal Layer Surface Layer Units
Particle size minimum 900 10 [µm]
Particle size maximum 1000 100 [µm]
Water saturation 0 0
Facetness minimum 0.05 0.8
Facetness maximum 0.15 0.99
Facetness mean 0.1 0.9
Facetness standard deviation 0.075 0.5
Sphericity minimum 0.6 0.3
Sphericity maximum 0.95 0.9
Sphericity mean 0.798 0.5
Sphericity standard deviation 0.072 0.15
Density 375 225 [kgm−3]
Temperature -5 -5 [◦C]
Layer thickness 15 1 [cm]
Polar incidence angle 0◦ 0◦
Wavelength range 400–2500 400–2500 [nm]

Table 7.6: SPLITSnow parameter values employed in the characterization of the snow sample
considered in the in silico experiment to generate the reflectance curves depicted in Figure 7.9.
Values in the basal layer column were used to produce the single layer sample represented by
the blue solid curve. Both layers were used to produce the red dashed curve.

This basal layer of snow is 15 cm thick. The dashed red curve in Figure 7.9 was produced
considering the same basal layer of snow covered by a thin, 1 cm thick layer of snow. This
surface layer consists of small, faceted, elongated snow grains.

Observe that although the overall qualitative trends between the two curves in Figure 7.9
are maintained, the magnitude of the reflectance and the relative magnitude of the peaks have
been dramatically altered by the addition of the a thin layer of faceted snow crystals. Although
the total thickness of the sample has been increased by 1 cm with the addition of the surface
layer, this does not account for the changes in reflectance. As reported by Salvatori et al. [190],
the grain characteristics of the top layer have a strong influence on the spectral distribution of
reflected EM radiation.

Although many snow samples are homogeneous and can be characterized by a single snow
grain type throughout the sample, some snow sample characterizations include multiple snow
grain types throughout a single layer. (See Figure 4.6 and Section 4.5.) For such cases, it is com-
mon practice to characterize snow grains using “effective” properties [77] (e.g., using optically-
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equivalent grain size instead of actual grain size [60]). This is especially true with analytical
modelling approaches (e.g., see Kokhanovsky and Zege 2004 [121] and Picard et al. [173]). How-
ever, with disparate grain forms, it may be desirable to represent multiple types of snow grains
within a single layer. The SPLITSnow formulation accounts for this aspect.

Figure 7.10 presents the results of simulation using three different snow samples. The char-
acterization parameter values for the two types of snow grains used in these three samples are
provided in Table 7.7. For all three snow samples, the density was set to 275 kgm−3, the sat-
uration was set to 0.05 and the angle of incidence was 0◦. The solid blue curve was produced
using a virtual snow sample that employs exclusively large grains whose parameter values are
provided in Table 7.7. The dotted green curve was produced using a virtual snow sample that
employs exclusively small grains whose parameter values are provided in Table 7.7. Lastly, the
dashed red curve was provided using an equal part by quantity of each of the two grain types.

To conclude this section, we present two experiments that account for the presence of im-
purities in snow as described in Section 4.6. We remark that, for black carbon, the Angstrom
exponent is often set to a value of one [118, 160].3 Furthermore, we note that a value of
16.6× 880 ≈ 14625 is commonly used for the computation of the Mass Absorption Efficiency
(MAE) for black carbon (e.g. [71, 118, 165, 195, 197, 209]).4 Consequently, we follow suit and
use the values 16.619 m2 g−1 for the MAE, 880 nm for the reference wavelength, and 1 for the
Angstrom exponent.

Our first experiment involving impurities attempts to reproduce the trend that as black car-
bon is added to the sample then reflectance decreases. Figure 7.11 demonstrates the results.
As can be observed, when black carbon is added to pure snow, the reflectance decreases, pri-
marily in the UV and visible ranges. This trend was reported by Wiscombe and Warren [235].
(See also Warren [228].) Their analytic model demonstrates qualitatively similar results when
similar quantities of black carbon are added to a pure snow sample.

Our second experiment investigating impurities in snow examines brown carbon and the
impact of variations in the Angstrom exponent. Recall from above, that we employed a value
of one for the Angstrom exponent to produce Figures 7.3 and 7.11. Brown carbon, on the other
hand, is characterized by having a higher Angstrom exponent [118]. Although Kirchstetter and
Novakov [118] found that an Angstrom exponent of two is suitable for brown carbon produced

3Experimental results form Kirchstetter and Novakov [118] verify the suitability of this value. However, other
values may sometimes be employed [34, 99, 197].

4 According to the work of Ramachandran et al. [178, 179], the MAE for black carbon, Mbc, and the reference
wavelength, λbc, are usually set to 16.6 m2 g−1 and 880 nm when conducting studies involving this impurity. This
is due to the fact that these values are used for calibrating the measurement equipment frequently used to conduct
these field studies.
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Figure 7.10: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering heterogeneous grain types. The blue solid curve was produced
using large grains, the red dashed curve was produced using heterogeneous (mixed) grains and
the green dotted curve was produced using small grains.

Parameter Large Grains Small Grains Units
Particle size minimum 800 200 [µm]
Particle size maximum 1000 400 [µm]
Facetness minimum 0.01 0.7
Facetness maximum 0.2 0.9
Facetness mean 0.1 0.8
Facetness standard deviation 0.05 0.5
Sphericity minimum 0.8 0.3
Sphericity maximum 0.99 0.7
Sphericity mean 0.9 0.5
Sphericity standard deviation 0.064 0.1

Table 7.7: SPLITSnow parameter values employed in the characterization of the snow sample
considered in the in silico experiment to generate the reflectance curves depicted in Figure 7.10.
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Figure 7.11: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering various quantities of black (inorganic) carbon. The MAE was
set to 16.619 m2 g−1, the reference wavelength was set to 880 nm, the Angstrom exponent was
set to 1 and the sedimentation fraction was set to 0.5. The incident angle, grain size and sample
thickness were set to 60◦, 1000 ± 500 µm and 50 cm, respectively. The remaining parameter
values are provided in Table 7.1.

by biomass burning, other values are also mentioned in the related literature [201]. The results
of this experiment are presented in Figure 7.12.

The Angstrom exponent is varied from 1 (the value often associated with black carbon) to
2, (the value commonly used for brown carbon [118, 160]). Recall from Equation 4.13 that the
Angstrom exponent is in the denominator of the equation and serves to reduce the effect of
brown carbon on absorption. In other words, higher values of the Angstrom exponent are ex-
pected to increase the reflectance by reducing the absorption elicited by carbon-based material.
All other characterization parameter values were the same as those used in the representative
sample that are provided in Table 7.1.

7.2.2 Transmittance Trends

The presence of a thin layer of snow covering remote sensing targets can be sufficient to affect
the detection and interpretation of their spectral signatures. Moreover, it can alter the photo-
biology of vegetation, and, thus, the sustainability of ecosystems, notably in high altitude and
high latitude regions [18]. Hence, it is important to evaluate the predictive capabilities of the
SPLITSnow model with respect to light transmitted through snow layers. This was carried out
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Figure 7.12: Simulated directional-hemispherical reflectance curves computed using the
SPLITSnow model considering various values of the Angstrom exponent. 500 ng g−1 of brown
(organic) carbon were employed to produce each curve. The MAE was set to 16.619, the refer-
ence wavelength was set to 880 and the sedimentation fraction was set to 0.5. The remaining
parameter values are provided in Table 7.1.

through a series of in silico transmittance experiments, whose results we compared with field
observations reported in the literature.

Since studies of snow transmittance are scarcer than those performed on reflectance, we
performed comparisons of model predictions with qualitative trends reported for other granular
materials, such as sand-textured soils, in the literature. There are known phenomenological
similarities between sand-textured soils, made up of quartz crystals, and snow, made up of ice
crystals, with respect to radiant transfer at wavelengths sufficiently shorter than the size of the
grains [5].

Unless otherwise noted, the experiments described in this section employed the parame-
ter values of the representative sample presented in Table 7.1. In all experiments, the sample
thickness has been adjusted to 2 cm, except where thickness is used as the independent vari-
able. Note that the experiments in this section are restricted to the 400–1420 nm band since
transmittance values at wavelengths higher than 1420 nm were all computed to be zero due to
the strong absorptance of snow constituent materials, notably, ice and water, in the infrared
domain.

In our first transmittance experiment, whose results are presented in Figure 7.13, we ad-
dressed the effect of sample thickness (snow depth) on transmittance. As described in the liter-
ature [5, 40, 45, 67, 169], when the sample thickness increases the transmittance decreases. Note
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Figure 7.13: Simulated directional-hemispherical transmittance curves computed using the
SPLITSnow model considering various sample thicknesses (12.5–100 mm) and an angle of in-
cidence of 0◦. The remaining parameter values are provided in Table 7.1.

that the sample thickness is doubled from one experimental instance to the next and the corre-
sponding transmittance curves are approximately halved in the visible range (≈ 400–700 nm).
We remark that there is a low amount of absorptance of ice in this band (see Figure 6.2). How-
ever, where there are local maximum in absorptance, there is an even greater decrease in trans-
mittance. For example, the absorption maximum at 1030 nm (Figure 6.2, orange dotted line)
corresponds to the minima in the transmittance.

In our second transmittance experiment, whose results are presented in Figure 7.14, we
addressed the effect of grain size on transmittance. As reported in the literature [5, 40, 45,
67, 169, 208], transmittance is correlated with grain size, i.e., as the grain size increases the
transmittance also increases. Larger grains, while being more absorptive, are also known to
decrease the amount of scattering [40, 45, 67, 169]. The resulting effect is that the absorption-
to-scattering ratio is increased, which increases the depth to which light penetrates into the
material.

In our third transmittance experiment, whose results are presented in Figure 7.15, we ad-
dressed the effect of water content. We note that the addition of water to sand-textured soils
is known to significantly affect the qualitative trends observed in their measured transmit-
tance spectra [26, 40, 67, 169, 208, 211, 238]. For translucent sand-textured soils, both Woolley
and Stoller [238] and Bliss and Smith [26] observed that as water saturation increases, trans-
mittance also increases. However, for dark soils, they measured a decrease in transmittance
as water saturation increased. This is explained by the increase in absorption [208]. These
trends are both visible in our simulation results presented in Figure 7.15. In the visible spec-
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Figure 7.14: Simulated directional-hemispherical transmittance curves computed using the
SPLITSnow model considering various sizes of snow grains (100–500 µm), an angle of inci-
dence of 0◦ and a sample thickness of 2 cm. The remaining parameter values are provided in
Table 7.1.

trum (≈ 400–700 nm), ice grains are translucent and transmittance increases as saturation is
increased, which corresponds to the trend reported by Woolley and Stoller [238] and Bliss and
Smith [26] for translucent materials. However, in the 800–1450 nm band, where there is an
increase in absorptance (see Figure 6.2), snow behaves like a “dark” material and the trend is
reversed. This also agrees with the experimental observations reported by Woolley and Stoller
[238] and Bliss and Smith [26] with respect to light transmission through particulate materials.

Our fourth transmittance experiment investigates the effect of density. For optically thin
snowpack, density affects how light is transmitted to the underlying surface, which can affect
estimates of snow cover in remote sensing applications [84]. Figure 7.16 depicts the results of
the experiment. As the density increases, the transmittance decreases as expected for particu-
late materials [45, 67, 159, 169, 238]. An increase in density affects the light propagated through
a snow deposit as it allows for more absorption and scattering events. The net impact of these
effects is a reduction in transmittance.

It is commonly reported in the literature that, for snow, as density increases transmittance
also increases (e.g., [45, 182, 184, 189]). However, this is opposite to the trend showcased in
Figure 7.16, and reported by Ollerhead [159] and Woolley and Stoller [238] for particulate ma-
terials. Incidentally, none of the aforementioned works carried actual controlled experiments
on the independent effects of density changes on snowpack’s transmittance, and instead cite
previous works that describe this trend. To our understanding, the explanation for this ap-
parent discrepancy lies on how the field observations were reported in the seminal work by
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Figure 7.15: Simulated directional-hemispherical transmittance curves computed using the
SPLITSnow model considering various values for water saturation (0–0.3), an angle of inci-
dence of 0◦ and a sample thickness of 2 cm. The remaining parameter values are provided in
Table 7.1.
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Figure 7.16: Simulated directional-hemispherical transmittance curves computed using the
SPLITSnow model considering various densities (200–400 kgm−3), an angle of incidence of
0◦ and a sample thickness of 2 cm. The remaining parameter values are provided in Table 7.1.
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Gerdel in 1948 [67]. Since then, Gerdel’s results have been interpreted and cited in those later
publications.

For instance, as we underscored in a recent publication [18], Robson and Aphalo [184] stated
that snow transmittance increases with increased density citing the work by Richardson and
Salisbury [182], while Saarinen et al. [189] mentioned the same transmittance-density relation-
ship citing the work of Curl et al. [45]. Richardson and Salisbury [182], in turn, cited the works
by Curl et al. [45] and Gerdel [67] when they mention increases in light transmission through a
snowpack following an increase in its density, while Curl et al. [45] themselves cited the work
of Gerdel [67] when they made the same statement.

Upon a closer examination of Gerdel’s field observations [67], a few elucidative aspects
stand out. First, his measurements did not include spectral distributions. Instead, they corre-
sponded to the total amount of radiance from 250–3000 nm penetrating the snowpack. Second,
indeed Gerdel [67] initially mentioned that the amount of transmitted radiation increases with
increased density. However, while describing his experiments in more detail, he also reported
that the increase in density was accompanied by a substantial increase in grain size and, in some
measurement instances, it was also accompanied by an increase in the percentage of free water
(associated with the snowpack’s water saturation level). In fact, Gerdel explicitly states that
the “increase in density was accompanied by a distinct increase in the size of the snow crys-
tals” [67]. More recently, Perovich [169] suggested that density might have been just a proxy
for other snow characteristics, notably grain size, in previous investigations of its relationship
with snow optical properties [18].

As discussed earlier, the change in snow grain size also has an effect on the light penetra-
tion, and by extension transmission, through snow. More precisely, an increase in grain size
is associated with an increase in light transmittance, as illustrated in Figure 7.14. In our fifth
transmittance experiment, we show how a concomitant increase in density and grain size can
lead to a transmittance increase. The results of this experiment are presented in Figure 7.17,
which depicts plots of two virtual snow samples with differing density and grain size values.

The blue solid curve in Figure 7.17 has a low density (200 kgm−3) and a low mean grain
size (100 µm). Whereas the red dashed curve has both higher values for density and grain
size (400 kgm−3 and 500 µm, respectively). All other parameter values are those provided in
Table 7.1. As is evident in Figure 7.17, when the density is increased along with grain size (as
reported by Gerdel [67]) then the transmittance increases.

Hence, as corroborated by our density related findings, presented in Figures 7.16 and 7.17,
the effects of density on the snow transmittance may vary depending of whether or not it is
accompanied by changes in the other key characteristics such as grain size. Later (in Chapter 9),
we will also provide a visual demonstration of this effect.
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Figure 7.17: Simulated directional-hemispherical transmittance curves computed using the
SPLITSnow model demonstrating the combined effect of density and grain size. The blue solid
curve employs both a low value for the mean grain size (100 µm) and a low value for density
(200 kgm−3). The red dashed curve employs both a high value for mean grain size (500 µm)
and a high value for density (400 kgm−3). The remaining parameter values are provided in
Table 7.1.

7.3 Goniometric Assessments

In this section, we compare goniometric simulated results with phenomenological traits ob-
served in goniometric measurements reported in the literature. In addition to these compar-
isons, we also present the results of two in silico experiments on the effects of different grain
characteristics on directional reflectance.

Figure 7.18 presents simulated BRDF plots obtained for the representative snow sample
considering three (polar) angles of incidence. Each plot corresponds to reflectance values taken
through the principal planes. In their field study, Hudson et al. [95] described two main features
which are also reproduced by these simulated results. First, the reflectance values measured
for reflection angles close to the zenith5 were lower than those measured for reflection angles
close to the horizon. Second, this phenomenon becomes more noticeable for larger angles of
incidence. Both features can be observed in the plots depicted in Figure 7.18.

Figure 7.19 presents a simulated BRDF plot obtained considering a wavelength of 1800 nm
and an angle of incidence of 69.3◦. Notice that in addition to the features outlined above, a
reduction in the reflectance values (represented by a concave shape) near the zenith can be

5The point directly above an observer, perpendicular to the surface.
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Figure 7.18: BRDF plot (through the principal plane) computed for the representative sample
considering various angles of incidence and a wavelength of 600 nm. The three angles of in-
cidence, 52.8◦ (blue solid curve), 69.3◦ (red dashed curve) and 84.8◦ (green dotted curve), were
employed to allow predictive comparisons with the results provided by Hudson et al. [95]. The
snow thickness is set to 25 cm. The remaining parameter values are provided in Table 7.1. The
directions of incidence are indicated with matching (straight) lines.

observed. This distinct darkening feature is apparent in the measured data obtained by Hudson
et al. [95] for the same wavelength and angle of incidence. Dumont et al. [54] also observed this
feature in their measured data, which they deemed “nadir darkening.”

Figure 7.20 presents simulated BRDF plots obtained considering the same angle of inci-
dence (69.3◦) and using two wavelengths (600 and 1800 nm) associated with markedly distinct
spectrometric reflectance values. The red dashed curve is reproduced from Figure 7.18, and the
blue solid curve is reproduced from Figure 7.19. For illustrative purposes, both curves in Fig-
ure 7.20 are presented using the same scale. As it can be observed, the amount of directional
variation is greater for wavelengths associated with relatively low spectrometric reflectance
values as reported by Hudson et al. [95]. This trend is also consistent with observations made
by Xiong et al. [242]. For 1800 nm, they note that grain shape plays an important role in bidi-
rectional reflectance modelling, and that models employing only spherical snow grains tend
to overestimate the amount of scattering in the forward direction. For 600 nm, where the to-
tal reflectance is greater, the angular dependence is weaker. However, as indicated by Xiong
et al. [242], models employing nonspherical grains are able to reproduce the bidirectional re-
flectance pattern with greater fidelity. This effect of grain shape on directional reflectance aids
in the characterization of snow surface scattering properties since snow tends to have a high
reflectance in the forward direction when the angle of incidence is in the neighbourhood of
70◦ [49].

Besides the behaviours highlighted above, Dumont et al. [54] identified two other qualitative
trends related to the polar angle of incidence. These trends can also be reproduced by the
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Figure 7.19: BRDF plot (through the principal plane) computed for the representative sample
considering an angle of incidence of 69.3◦ and a wavelength of 1800 nm. These values were
employed to allow qualitative comparisons with the data provided by Hudson et al. [95]. The
snow thickness is set to 25 cm. The remaining parameter values are provided in Table 7.1. The
direction of incidence is indicated with a black solid (straight) line.
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Figure 7.20: BRDF plots (through the principal plane) computed for the representative sample
considering an angle of incidence of 69.3◦ and two wavelengths, namely 600 nm (red dashed
curve), and 1800 nm (blue solid curve). These values were employed to allow qualitative com-
parisons with the data provided by Hudson et al. [95]. The snow thickness is set to 25 cm. The
remaining parameter values are provided in Table 7.1. The direction of incidence is indicated
with a black solid (straight) line.

SPLITSnow model as described next.
The first trend refers to a nearly Lambertian behaviour of snow reflectance for an angle

of incidence of 0◦. The blue solid curve in Figure 7.21 indicates that the proposed model can
capture this behaviour.

The second additional trend noted by Dumont et al. [54] is that at an angle of incidence of
30◦, the forward scattering peak becomes apparent. Similarly, the SPLITSnow model can also
capture this behaviour as indicated by the red dashed curve in Figure 7.21. Dumont et al. [54]
further remarked that, at an angle of incidence of 60◦, the forward scattering peak is even more
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Figure 7.21: BRDF plots (through the principal plane) computed for the representative sam-
ple considering three angles of incidence and a wavelength of 600 nm. The three angles of
incidence, 0◦ (blue solid curve), 30◦ (red dashed curve), and 60◦ (green dotted curve) were em-
ployed to allow qualitative comparisons with the data provided by Dumont et al. [54]. The
remaining parameter values are provided in Table 7.1. The directions of incidence are indicated
with matching (straight) lines.
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Figure 7.22: BRDF plots (through the principal plane) computed for the representative sample
considering a (polar) angle of incidence of 67◦, a wavelength of 600 nm and three grain sizes.
The blue solid curve is associated with the presence of coarse-sized grains (1.5–3 mm), the red
dashed curve with the presence of middle-sized grains (as specified in Table 7.1), and the green
dotted curve with the presence of fine-sized grains (0.03–0.3 mm). The remaining parameter
values are provided in Table 7.1. The direction of incidence is indicated with a black solid
(straight) line.

pronounced. This is also reproduced by our simulation as demonstrated by the green dotted
curve in Figure 7.21.

Apart from the trends outlined above, Dumont et al. [54] also noted that grain size has a
measurable effect on directional reflectance. They observed that their maximum reflectance
factor was higher for the samples that consisted of smaller grains. Warren et al. [231], in turn,
indicated that this phenomenon is wavelength dependent, i.e., when absorption is high and
grain sizes are large, the opposite is to be expected. To determine whether the proposed model
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can also account for these behaviours, we conducted in silico experiments in which we varied
both the wavelength and the average grain size.

Figure 7.22 presents the results of the experiment that reproduces the behaviour reported
by Dumont et al. [54] earlier above. In this experiment, we considered a wavelength of 600 nm
and an angle of incidence of 67◦. At 600 nm the extinction coefficients for both water and ice
are low (see Figure 6.2). Note that the forward scattering peak with the smallest magnitude was
elicited by the fine grained snow.

Figure 7.23 presents the results of the experiment involving the wavelength dependency
observed by Warren et al. [231]. In this experiment, we considered a wavelength of 1450 nm.
We note that the extinction coefficient values for water and ice at this wavelength are higher
than those at 600 nm (see Figure 6.2). The angle of incidence and the grain sizes are the same as
those used to generate the results presented in Figure 7.22. As it can be verified in these results,
the fine grained snow elicited the forward scattering peak with the greatest magnitude. Thus,
the SPLITSnow model correctly reproduces the behaviour reported by Warren et al. [231].

Finally, we performed an experiment to investigate the effect of facetness on directional
reflectance. In situ controlled experiments assessing this effect are not readily documented
in the literature. However, anecdotal evidence exists to suggest that the quantity of facets
should have an impact on directional reflectance [54]. Indeed, the results of our experiment,
which are presented in Figure 7.24, indicate that samples whose grains are characterized by low
facetness exhibit greater angular variation for their BRDF values than samples whose grains are
characterized by high facetness. A more detailed treatment of this phenomenon is provided in
Appendix F.

7.4 Comparison with Remotely Acquired Data

In this section, we illustrate how the proposed framework may be applied to remotely acquired
data. We examined a dataset obtained from the Himalayan mountains as part of the NASA
AVIRIS-NG mission [75, 86]. Figure 7.25 presents our comparison results.

In Figure 7.25(a), the selected area of observation is displayed using a portion of the “quick-
look” image dataset, which is a version of the dataset that has been processed for viewing. The
inset image is a 500% magnification of the region enclosed by the red square. No interpolation
was used so that the original pixel values are preserved. The black square within the inset image
demarcates the 25 pixels selected for analysis. We selected the pixels in this region due to their
limited change in elevation, i.e., the surface is level and the elevation gradient is small. In fact,
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Figure 7.23: BRDF plots (through the principal plane) computed for the representative sam-
ple considering a (polar) angle of incidence of 67◦, a wavelength of 1450 nm and three grain
sizes. The blue solid curve is associated with the presence of coarse-sized grains (1.5–3mm),
the dashed red curve with the presence of middle-sized grains (as specified in Table 7.1), and
the green dotted curve with the presence of fine-sized grains (0.03–0.3 mm). The remaining
parameter values are provided in Table 7.1. The direction of incidence is indicated with a black
solid (straight) line.
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Figure 7.24: BRDF plots (through the principal plane) computed for the representative sample
considering a (polar) angle of incidence of 60◦, a wavelength of 600 nm and three different
facetness values. The blue solid curve is associated with low facetness (0.0–0.2), the red dashed
curve is associated with an intermediate facetness (0.2–0.4), and the green dotted curve is asso-
ciated with a high facetness (0.8-1.0). The remaining parameter values are provided in Table 7.1.
The direction of incidence is indicated with a black solid (straight) line.

the selected pixels are associated with a maximum elevation gradient of 0.165 and a mean ele-
vation gradient of 0.067. Eight of the selected pixels are associated with a gradient smaller than
0.1. The average reflectance was then computed for the 25 selected pixels. In Figure 7.25(b),
a comparison between the average measured reflectance values of the selected region (black
squares) with values produced using the SPLITSnow model (blue curve) is provided. Bars are
used to indicate the minimum and maximum reflectance values for the 25 pixels.

We remark that interpretation of signals detected from instrumentation aboard aircraft is
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Figure 7.25: Comparison of measured (obtained by the AVIRIS-NG [86] mission) and simu-
lated data. The simulated directional-hemispherical reflectance curve was obtained using the
SPLITSnow model and the sample characterization parameter values provided in Table 7.1, ex-
cept that the snow depth was set to 25 cm and the angle of incidence was set to 62.3◦. A portion
of the “quicklook” image from the ang20160217t074158 flight line over Himachal Pradesh, India,
is presented in (a). The inset image presents an enlargement of the region of study that has
not been interpolated. The selected pixels are demarcated by a black square in the inset image.
This region is represented by a grid of 5 × 5 pixels. In (b), the simulated reflectance curve is
depicted by the blue solid line. The black squares indicate the average reflectance values for
the 25 selected pixels and the bars indicate the minimum and maximum values for the selected
pixels.
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Wavelength Simulated Measured
(nm) Minimum Mean Maximum

842.25 0.878 0.848 0.890 0.916
1037.76 0.692 0.669 0.701 0.721
1237.93 0.495 0.464 0.484 0.496

Table 7.8: Comparison of measured (obtained from the AVIRIS-NG dataset) and simulated re-
flectance values at selected wavelengths. The measured values correspond to the reflectances
of the 25 pixels forming the region (inset) shown in Figure 7.25(a), and the simulated values
were computed using the SPLITSnow model.

more difficult compared to field studies and laboratory experiments [120], and compensation
is required for atmospheric absorption and scattering [65, 210]. Thus, the comparisons detailed
in this section were performed against the correction outputs provided by the “Level 2” algo-
rithm [210], which attempts to reduce measurement biases over snow-covered terrain.

Gao and Goetz [65] note that atmospheric water vapour transmittance values are greater
than 99% in narrow bands surrounding specific wavelengths, 840 nm, 1040 nm and 1240 nm,
whereas other wavelength bands, such as 940 nm and 1140 nm, are sensitive to water vapour ab-
sorption. To minimize bias due to atmospheric water vapour, we provide a comparison between
simulated and measured reflectance values for the three wavelengths at which high transmis-
sion was noted. These data are presented in Table 7.8. The three wavelengths presented in the
table were chosen among those employed by the AVIRIS-NG instrument directly since they are
the nearest to the high-transmittance bands described by Gao and Goetz [65]. The simulated
values were also computed using the same wavelengths for the purpose of direct comparison.
The relative errors between average measured pixel values and the simulated values are all be-
low 2.3%. The mean percent difference for the minimum and maximum values is 3.6%. Hence,
the results of our comparisons indicate that the predictions provided by the proposed frame-
work can contribute to the reliable interpretation of remote sensing signals from snow-covered
landscapes. Furthermore, they may also aid in the determination of aerosol optical thickness
where advanced surface reflectance models are needed by elucidating the surface contribution
to top-of-atmospheric reflectance [120].
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Chapter 8

Data Analysis Results

In this chapter, we assess the effectiveness of the method proposed in Chapter 5 for visually re-
producing the appearance attributes of snow, notably those associated with light transmission.
We begin with a brief examination of the procedure leading to the selection of the parameter
values used to generate the spectral transmittance database. Next, we present an analysis of
the benefits obtained from applying the principal component analysis (PCA) technique to the
database. Finally, we examine the visual fidelity of the spectral reconstructions obtained using
PCA and showcase the impact of snow parameter variations on its bluish appearance.

8.1 Spectral Transmittance Database

As discussed in Chapter 5, we generated a database of spectral transmittance curves using the
SPLITSnow framework. To generate this database, we selected three snow characterization
traits, namely, facetness, grain size and density, that are known to have a considerable impact
on light transmission through snow [219]. In this work, we considered virtual snow samples
with nine different grain sizes, five different degrees of facetness and five densities, yielding
225 unique snow exemplars. These exemplars are illustrated in Figure 8.1, which depicts a
reconstructed spectral transmittance curve for each of the 225 virtual snow samples.

We also identified two other traits that have an impact on appearance. Namely, snowpack
depth and the angle of incident illumination. To account for these two factors, we also consid-
ered eleven different snowpack thicknesses and ten distinct angles of incidence. Accounting for
these five factors, we computed the transmittance values for 24750 spectral curves, which were
included in the transmittance database. Lastly, for each transmittance curve, we considered a
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Figure 8.1: Reconstructed spectral transmittance curves for each of the 225 snow exemplars
employed in this work. The plotted spectral curves were produced using an angle of incidence of
0◦, and the samples are 15 cm thick. The samples are ordered first by grain size, then decreasing
density, and then finally by facetness.

spectral resolution of 10 nm, yielding 31 wavelengths in the visible spectrum (400–700 nm).
Table 8.1 lists the specific values considered for each parameter.

Note that the remaining model parameters, namely sphericity, temperature, saturation,
black (inorganic) carbon content and brown (organic) carbon content were kept fixed for prac-
tical purposes. More specifically, the mean sphericity was set to 0.798 with a standard deviation
of 0.064. Also the minimum and maximum sphericities were set to 0.6 and 0.95 respectively.
Furthermore, the temperature of all snow exemplars in the transmittance database was set to
-1◦C. Lastly, the samples were assumed to be in a dry (saturation equal to zero) and pure (no
black or brown carbon content) state.

We remark that the spectral transmittance curves forming the database were computed
using the SPLITSnow light transport model described in Chapter 4. As discussed in that chapter,
this model makes use of geometric (ray) optics to simulate light interactions with snow grains.
For the computation of each transmittance curve in the transmittance database, 105 rays (per
sample wavelength) were employed in order to attain asymptotically convergent radiometric
quantities [17].
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Parameter Values Range Units
Mean Facetness 0.1, 0.3, 0.5, 0.7, 0.9 ±0.1
Mean grain size 100, 150, 200, 250, 300, 350, 400, 450, 500 ±50 µm
Density 200, 250, 300, 350, 400 kgm−3

Snow thickness 1, 1.5, 2, 3, 5, 7, 10, 15, 25, 35, 50 cm
Angle of incidence 0, 10, 20, 30, 40, 50, 60, 70, 80, 89 degrees
Sphericity 0.798 (mean) [0.6, 0.95]
Temperature -1 ◦C
Saturation 0
Inorganic (Black) Carbon 0 ng g−1

Organic (Brown) Carbon 0 ng g−1

Table 8.1: Parameter values used to create the transmittance database of spectral transmittance
curves. Model parameters listed in the upper portion of the table were varied through the values
listed. Model parameters listed in the lower portion of the table were kept fixed.

The raw simulation output of this computation produced a database that was larger than
200 MB. This database was processed and reformatted so it could be represented by a single
matrix for use with PCA (see Section 5.2).

As previously discussed, three snow characterization traits were selected and their asso-
ciated model parameter values were varied (within the limits observed in nature [29, 60]) to
produce 225 virtual snow samples. For each of these traits, which have been documented in
the literature [5, 54, 159, 208, 238], we selected a uniform distribution of parameter values to be
included in this work. For snow grain size, where there was a greater effect on spectral curves,
we included nine different parameter values. For facetness and density, only five values were
selected. To highlight the effect that these snow sample traits have on spectral transmittance,
we plotted the spectral transmittance values when each of these traits is varied in Figures 8.2–
8.7. For the sake of clarity, only a subset of the selected parameter values for snow are depicted
in each plot. To produce these plots, default values were selected for the virtual snow samples,
and only the parameter value under test was varied. The default values are given in Table 8.2.

Figure 8.2 depicts the trend of increasing grain size. Observe that a greater percentage
of light is transmitted for all wavelengths in the visible spectrum as the grain size increases.
However, as snow grain facetness increases, less light is transmitted as shown in Figure 8.3.
Lastly, Figure 8.4 demonstrates the trend that the transmittance values of visible light tend to
decrease as density increases.
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Figure 8.2: Simulated spectral transmittance curves for a typical snow sample computed using
the SPLITSnow model and considering variations in grain size. Except for the parameter under
test, all other parameter values are set to the default values specified in Table 8.2. Grain size is
varied from 100–500 µm.
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Figure 8.3: Simulated spectral transmittance curves for a typical snow sample computed using
the SPLITSnow model and considering variations in facetness. Except for the parameter under
test, all other parameter values are set to the default values specified in Table 8.2. Facetness is
varied from 0.1 to 0.9 (unitless).
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Parameter Value
Grain size range (µm) 300–750
Facetness (unitless) 0.3± 0.1
Density (kgm−3) 275
Sample thickness (cm) 12
Angle of incidence (◦) 0

Table 8.2: SPLITSnow parameter values employed in the characterization of the snow sample
used to obtain the data presented in Figures 8.2–8.7.

The angle of incidence also has an impact on the process of light transmission through snow.
Furthermore, this parameter is also important for many rendering applications. As described in
Section 2.4, the path tracing algorithm traces paths stochastically from the viewer (or the virtual
camera) back to a light source. As such, the angle of incidence of light impingement on objects
in the scene can be at any angle in the upper hemisphere. Therefore, due to its importance for
rendering applications, we selected ten values for this parameter to include in the transmittance
database. The trend observed when the angle of incidence is varied for a selection of angles is
depicted in Figure 8.5.

The final dimension to address is snow sample thickness. Light transmission through snow
is significantly impacted by the thickness of the sample [5] and the relationship is non-linear
[219]. In order to select the set of snow sample thicknesses to include in the transmittance
database, we examined several thicknesses (varying from 1 cm to 100 cm) of a single snow
sample and produced spectral transmittance curves for each thickness. We then integrated
each spectral curve to compute the total transmittance for all wavelengths of each curve. Fig-
ure 8.6 presents a log-log plot of these results. The near linearity of this curve indicates that
the quantity of light transmitted roughly obeys a power law relationship with snow sample
thickness. Therefore, we chose to include thickness values (see Table 8.1) that roughly follow
such a relationship. This computational experiment indicated that less than 0.3% of light was
transmitted below a depth of 100 cm, and less than 0.7% of light was transmitted below a depth
of 50 cm. Accordingly, we opted to include a value of 50 cm as our thickest sample, and to
consider all transmittance values beyond 100 cm to be negligible. Similarly, for a snow thick-
ness of 0 cm we assume that light is transmitted completely. Although the transmittance values
for snow sample thicknesses of 0 cm and 100 cm are not explicitly stored in the transmittance
database, they will be used implicitly as part of the visualization process (see Section 5.3). The
transmittance values for a subset of the sample thicknesses that are stored in the transmittance
database are plotted in Figure 8.7.
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Figure 8.4: Simulated spectral transmittance curves for a typical snow sample computed using
the SPLITSnow model and considering variations in density. Except for the parameter under
test, all other parameter values are set to the default values specified in Table 8.2. Density is
varied from 200–400 kgm−3.
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Figure 8.5: Simulated spectral transmittance curves for a typical snow sample computed using
the SPLITSnow model and considering distinct angles of incidence. The angle of incidence is
varied from 0◦–80◦. All other parameter values are set to the default values specified in Table 8.2.
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Figure 8.6: Log-log plot of total transmittance vs. snow thickness. Transmittance values are
integrated across the visible spectrum to compute the sum total transmittance across all wave-
lengths. All other parameter values are set to the default values specified in Table 8.2

8.2 Transmittance Database Compression

We applied the PCA technique discussed in Section 5.2 to the database of spectral transmittance
curves. Our intent was to reduce the dimensionality of the database for the purpose of imple-
menting an efficient technique to reconstruct the stored spectral light transmittance curves.
Recall from Section 8.1 that a total of 225 snow exemplars were included in the transmittance
database. For each sample, ten angles of incidence and eleven sample thicknesses were chosen
for rendering purposes, and the spectral transmittance curves were sampled at 31 wavelengths.
Thus, the database is represented by a 24750× 31 matrix M , whose 24750 rows correspond to
the spectral curves and 31 columns correspond to the sampled wavelengths of light. Therefore,
the database contains over 750 thousand numeric values. Our experiments (discussed below)
indicated that two principal components were sufficient to reconstruct the spectra without loss
of visual fidelity. Using two components for the application of PCA reduced the dimensionality
of this database down to the two matrices: a 24750×2 matrixC ′ and the 31× 2 matrix V ′. This
yielded a PCA representation requiring only 6.5% of the storage space employed for the original
database. Furthermore, it is orders of magnitude smaller than the raw simulation output which
exceeded 200 MB in size.

Recall that we employed two criteria to determine the number of principal components that
are sufficient to reproduce the spectral curves. More specifically, we calculated the RMSE values
and the perceptual differences as discussed in Section 6.5.

The RMSE values were computed using Equation 6.4. This computation was performed be-

115



400 450 500 550 600 650 700

Wavelength (nm)

 0%

 2%

 4%

 6%

 8%

10%

12%

14%

16%

18%

20%

T
ra

n
s
m

it
ta

n
c
e

   2 cm

   3 cm

   5 cm

 10 cm

 50 cm

Figure 8.7: Simulated spectral transmittance curves for a typical snow sample computed using
the SPLITSnow model and considering distinct thickness values. All other parameter values
are set to the default values specified in Table 8.2

tween every curve in the transmittance database and its associated reconstruction using various
numbers of principal components. The results of this analysis are presented in Table 8.3, where
the minimum, mean and maximum error values are given. As expected, the greatest error was
reported for the fewest number of principal components used in the curves’ reconstructions.

We remark that the maximum RMSE value for one principal component (l′ = 1) is markedly
different than the maximum RMSE value for the spectral reconstructions produced using two
principal components (l′ = 2). We also note that utilizing three and four principal components
does reduce the RMSE error values. However, the reduction in error between the reconstruc-
tions using two and three principal components is significantly less than the reduction in error
when adding the second principal component. Similarly, adding a fourth component further
reduces the error, but the reduction in mean error is even less significant. This indicates that
the greatest benefit-to-cost ratio is observed when using two principal components.

Although the RMSE values suggested that employing two principal components provided
the greatest benefit-to-cost ratio, we were primarily interested in preserving the visual fidelity
of the spectral responses. To numerically assess the fidelity of the spectral reconstructions on
the human visual system, we computed the L∗a∗b∗ coordinates in the CIELAB colour space for
the reconstructed curves and the respective curves in the transmittance database. As discussed
in Section 6.5, the CIELAB difference between the two values yields a measure of the perceptual
difference observed by the visual system of an average human observer. The results of this
analysis are presented in Table 8.4.

We remark that two colours in the CIELAB colour space with a Euclidean distance less

116



Components RMSE
Minimum Mean Maximum

1 0.00013 0.00149 0.00470
2 0.00010 0.00060 0.00192
3 0.00006 0.00047 0.00191
4 0.00003 0.00045 0.00183

Table 8.3: RMSE values between spectral reconstructions of transmittance values/curves pro-
vided in the transmittance database. The reconstructions were conducted using PCA. Minimum,
mean and maximum values were computed using various numbers of principal components.

Components Perceptual Difference
Minimum Mean Maximum

1 0.0043 0.7612 2.8638
2 0.0031 0.2720 1.3955
3 0.0012 0.1074 0.5203
4 0.0003 0.0519 0.2672

Table 8.4: Perceptual difference values between spectral reconstructions of transmittance val-
ues/curves provided in the transmittance database. The reconstructions were conducted using
PCA. Minimum, mean and maximum values were computed using various numbers of princi-
pal components.

than 2.3 have been experimentally determined to be indistinguishable for an average human
observer [131, 204]. As shown in Table 8.4, when we employed just a single principal compo-
nent, the maximum difference was 2.8, which is significant enough to be noticeable. However,
when we employed two principal components to reconstruct the spectral transmittance values,
the resulting max perceptual difference was less than 1.4. When three and four principal com-
ponents were used to reconstruct the transmittance spectral curves, the perceptual differences
were still lower, with the maximum differences being 0.52 and 0.27, respectively. Although
these reconstructions exhibit smaller error values and are closer CIELAB matches, the added
fidelity is not perceptually significant for an average human observer [131, 204]. Therefore, the
reconstructed spectral values used in the renderings presented in this thesis were obtained by
employing two principal components.
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Figure 8.8: Snow swatches generated for two samples, denoted A (left) and B (right), with the
greatest perceptual differences between the original and the reconstructed spectral transmit-
tance curves. The snow sample parameter values are provided in Table 8.5. Swatches in the top
row were generated using the original values in the transmittance database. Swatches in the
middle and bottom rows were generated using one and two principal components, respectively.

8.3 Visual Fidelity

To examine the visual fidelity associated with our PCA-based spectral reconstructions, we gen-
erated swatches using the transmittance database and transmittance curves reconstructed using
both one and two principal components. We then visually compared the results. Two exam-
ples of these comparisons are presented in Figure 8.8. The snow samples’ parameter values
considered in these examples are provided in Table 8.5.
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Parameter A B
Grain size (µm) 500 500
Density (kgm−3) 350 400
Facetness (unitless) 0.1 0.1
Angle of incidence (degrees) 10 0
Thickness (cm) 25 15

Table 8.5: SPLITSnow parameter values used in the characterization of virtual snow samples (A
and B) employed in the generation of the swatches presented in Figure 8.8.

The swatches in the top row were created using the original transmittance database spectra
(i.e., the values stored in the matrix, M ). The middle row contains swatches generated using a
single principal component. Finally, the bottom row was obtained using two principal compo-
nents.

The snow samples in Figure 8.8 exhibited the two greatest perceptual differences when only
a single principal component was used. Observe the visual similarity between swatches gener-
ated with reconstructed values employing two principal components and swatches generated
with the original transmittance database curves.

The spectral curves used to create the swatches depicted in Figure 8.8 are presented in Fig-
ure 8.9. The three curves in Figure 8.9 (top) show the original spectral transmittance curves of
the transmittance database for the left column of Figure 8.8, including the reconstructions made
using both one and two principal components. Figure 8.9 (bottom) shows the respective curves
for the swatches in the right column of Figure 8.8. We remark that the reconstruction using
two principal components adheres to the same trends observed in the transmittance database.
This is consistent with the RMSE values presented in Table 8.3.

8.4 Snow Characterization Variability

To showcase the effects that the various parameters have on the bluish appearance of the snow
samples, we generated swatches using the extreme values the three snow characterization pa-
rameters, namely grain size, facetness and density. These swatches are presented in Figure 8.10.
The minimum and maximum values assigned to these parameters were used in the generation of
the swatches in the left and right columns, respectively. In the top row, the minimum (100 µm)
and maximum (500 µm) grain sizes were used to generate the two swatches. In the middle row,
the minimum (0.1) and maximum (0.9) values of facetness were utilized. Finally, in the bottom
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Figure 8.9: Spectral transmittance curves employed to generate the swatches depicted in Fig-
ure 8.8. Top: Spectral transmittance values of the transmittance database for sample A, plus the
spectral transmittance values recreated using both one and two principal components. Bottom:
Spectral transmittance values of the transmittance database for sample B, plus the spectral val-
ues recreated using both one and two principal components.

row, the minimum (200 kgm−3) and maximum (400 kgm−3) values of density were employed.
The SPLITSnow parameter values used as default characterization values that are not subject to
variation are provided in Table 8.6. For the pair of swatches in each row, the perceptual differ-
ence values between the two swatches were calculated using Equation 6.5. The corresponding
values from top to bottom are 17.2, 3.4 and 9.3, respectively. We note that these values are con-
sistent with the differences in the magnitude of the spectral transmittance curves (presented in
Figures 8.2–8.4) associated with variations in grain size, facetness and density, respectively. In
the next chapter, we illustrate the impact of another key snow parameter, its thickness.
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Figure 8.10: Snow swatches generated from virtual snow samples considering different values
for sample parameters (grain size, facetness and density). The minimum (left) and maximum
(right) values of each parameter were used to generate the swatches. Top: Swatches gener-
ated employing a grain size of 100 µm and 500 µm. Middle: Swatches generated employing a
facetness of 0.1 and 0.9. Bottom: Swatches generated employing a density of 200 kgm−3 and
400 kgm−3. The parameters not subject to variation were set to the values presented in Ta-
ble 8.6.
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Parameter Value Units
Grain Size 400± 50 µm
Density 300 kgm−3

Facetness 0.3± 0.1
Angle of incidence 0 degrees
Thickness 15 cm
Sphericity (mean) 0.798
Sphericity (minimum) 0.6
Sphericity (maximum) 0.95
Sphericity (standard deviation) 0.064

Table 8.6: SPLITSnow parameter values used as default characterization values of the virtual
snow samples employed in the generation of the swatches presented in Figure 8.10. The pa-
rameters in the top portion of the table were subject to variation in the creation of Figure 8.10,
whereas the parameters in the bottom portion of the table were fixed for the generation of all
swatches.
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Chapter 9

Visual Results

In this chapter, we address potential realistic image synthesis applications of the proposed
framework. We begin with the presentation of images that highlight specific appearance
changes elicited by reflection and transmission of light through snow. We then provide images
to showcase the applicability of the proposed framework to the rendering of scenes depicting
more comprehensive appearance changes resulting from light and snow interactions.

9.1 Specific Appearance Changes

Figure 9.1 presents images depicting appearance variations produced by light transmission
through four blocks of snow of varying thicknesses. The blocks were rendered using the
PCASnow material implementation class described in Section 5.3 and employing a standard D65
illuminant [37]. The blocks are backlit by an unseen light source. The thicknesses of the blocks
are approximately 5, 10, 15 and 30 cm, starting from the left. In order to focus on the colour
change due to volume thickness, no textures were employed. The PCASnow material class was
initiated using a snow sample with a mean grain size of 400 µm, a density of 300 kgm−3 and
a moderately low quantity of crystalline features (facetness) of 0.3. We remark that there is an
observable change in appearance of the transmitted light as the thickness of the snow increases.

The oblique-angled image in Figure 9.1 (right), i.e., the 30 cm thick snow block, takes less
than one minute to render on an Advanced Micro Devices Inc. (AMD) Ryzen Threadripper
3990X central processing unit (CPU) with 64 computing cores. The rendered image contains
1080 × 1080 pixels and was rendered using 100 samples per pixel. To render the image, the
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Figure 9.1: Sequence of rendered images depicting light interactions with four different blocks
of snow. From left-to-right, the snow blocks are approximately 5, 10, 15, and 30 cm thick.
Each sequence component contains three images. Upper-left image: The geometry is rendered
using a standard local illumination model and a point light source situated near the eye-point.
Upper-right image: The geometry is rendered using the process described in Section 5.3. The
light source is behind the snow block and the viewing direction is perpendicular to the snow
block. Bottom image: The same technique is employed as in the upper-right image. However,
the viewing direction is oblique to the snow block.

Figure 9.2: Sequence of rendered images depicting light interactions with a block of snow con-
taining four different quantities of impurities. From left-to-right, the quantity of impurities are
0, 20, 100 and 400 ng g−1. A point light source is located in front of the snow block to account
for the effects of reflection. A second light source is located behind the snow block to account
for the effects due to light transmission.
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transmittance database was queried approximately 90 million times to obtain the spectral trans-
mittance values. For the purpose of comparison, the time required to conduct a full light trans-
port simulation for a single spectral transmittance curve for a volume of snow that is 30 cm
thick with the same snow characteristics utilizing the same CPU is approximately 7.5 min.

Figure 9.2 depicts the same 10 cm snow block as the one presented in Figure 9.1, but repeated
four times. The same light source is positioned behind the block of snow. However, an addi-
tional, point light source is placed in front of the snow block. The snow sample properties are
also kept the same as in Figure 9.1, except that black carbon impurities are added to the snow.
From left-to-right, the quantities of impurities are 0, 20, 100 and 400 ng g−1. To render these im-
ages, a reflectance database containing impurities was generated. This reflectance database was
incorporated into the renderer using the techniques described in Chapter 5. Observe that even
a small quantity of impurities (20 ng g−1, second from the left) is sufficient to noticeably darken
the snow sample. Also, following a substantial increase in black carbon content (400 ng g−1),
the snow sample is markedly darkened (rightmost rendering). Note that the impurities in each
rendering were specified as being black carbon with an Angstrom exponent value of one and a
sedimentation fraction value of one.

9.2 Comprehensive Appearance Changes

To further demonstrate the applicability of the proposed framework, we rendered two
demonstration scenes that also use the PCASnow material class discussed in Section 5.3. The
first scene, presented in Figure 9.3, depicts a rendering of light transmission through snow with
the camera positioned on the inside of an igloo and a light source located outside of the igloo.
The igloo is formed by snow blocks whose thicknesses are approximately 15 cm. To extend
our scope of observations, the image was generated using a directionally uniform D55 (5500K
daylight) illuminant [37, 96]. All light rays inside the igloo have been transmitted through the
geometry that represents the igloo wall via the PCASnow material class to account for indirect
illumination effects. In addition to the bluish hue exhibited by the light transmission, we re-
mark that exterior light also bleeds through the snow at the seams between the blocks, where
the geometry is comparatively thin, thus brightening the surface.

For illustrative purposes, we rendered the same scene using only a standard local illumi-
nation model employed for the reflectance calculation (Figure 9.3, inset). Since transmittance
through the snow blocks is not considered in the inset image, a point light source was placed
inside of the igloo to enable the visualization of the blocks.

The second demonstration scene, presented in Figure 9.4, depicts the Stanford Dragon ge-
ometry [46] rendered considering seven different virtual snow samples. The geometry has been
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Figure 9.3: Rendered images depicting the inside of an igloo formed by snow blocks. The main
image was rendered using reconstructed spectra that were produced by employing the method-
ology presented in Chapter 5. We remark that more light is transmitted where the snow thins
between the snow blocks whose thicknesses are approximately 15 cm. Inset: The same scene
rendered to illustrate the blocks’ arrangement. For the inset image, a standard, local illumina-
tion model was employed in conjunction with an interior light source.

scaled so that the diameter of the body’s main section is approximately 30 cm in diameter, with
the thickest part of the geometry (including the front legs) being approximately 80 cm in thick-
ness. Note that the variations of the thickness of the geometry contribute to the tonal gradations
of colour including white, various shades of blue and dark tones. Each rendering is backlit us-
ing a point light source of the same intensity and utilizes the D65 standard illuminant [37].
The main (top) image illustrates more diversely the snow appearance changes associated with
thickness variations affecting light transmission. The virtual snow sample considered in the
rendering of this image is characterized by a facetness of 0.3, grain size of 250 µm and a density
of 300 kgm−3.

It has been well established in the literature, that grain size has a large effect on the trans-
mission of light through snow [46, 67, 169, 184]. To showcase the effects of concomitant grain
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Figure 9.4: Rendered images depicting the Stanford Dragon [46] represented by seven distinct
virtual snow sample characterizations. Top: Medium values for grain size and density were
employed. Second row: minimum grain size (left) and maximum grain size (right) values were
employed. Third row: minimum density (left) and maximum density (right) values were em-
ployed. Bottom row: minimum grain size and minimum density (left) and maximum grain size
and maximum density (right) were employed. See Table 9.1 for the specific values assigned to
the aforementioned parameters. 127



Image Location Grain Size (µm) Density (kgm−3)
Top 250 300
Row 2, left 100 300
Row 2, right 500 300
Row 3, left 250 200
Row 3, right 250 400
Row 4, left 100 200
Row 4, right 500 400

Table 9.1: SPLITSnow parameters values employed in the creation of Figure 9.4. All renderings
were created using a facetness value of 0.3.

size and thickness variations, we also rendered the Stanford Dragon scene using low and high
values for the samples’ grain size, namely 100 µm and 500 µm. The remaining parameter values
were kept the same as those used to render the main (top) image. The resulting images are
presented in the second row of Figure 9.4. Observe that the virtual snow sample with the larger
grain size (second row, right) allows more light to be transmitted and exhibits a more vivid blue
hue than the main (top) image. This is in contrast to the virtual snow sample with the smaller
grain size (second row, left) that displays the opposite effect when compared to the main image
(top).

We then rendered the same scene using two different values of snow density, namely 200
kgm−3 and 400 kgm−3. The remaining parameter values were kept the same as those used to
render the main (top) image. The resulting images are presented in the third row of Figure 9.4.
We remark that the lower density sample (third row, left) allows for a greater quantity of light
to be transmitted through the sample when compared to the main (top) image. Similarly, the
snow sample with the higher density value (third row, right) exhibits lower transmittance values
when visually compared with the main (top) image. We remark that this trend is consistent with
the observations regarding density and snow transmittance presented in Section 7.2.2.

Finally, we rendered the same scene using the same density and grains size values used
to produce Figure 7.17. As discussed in 7.2.2, when there are concomitant changes in both
sample density and grain size, the transmittance values may increase as can be observed in
Figure 9.4, bottom. The bottom left image uses both low values for density and grain size,
whereas the bottom right image uses both high values. With such concomitant changes to the
characterization parameter values, it is possible for the overall transmittance to increase. This is
despite the increase in density which, in isolation, has the effect of decreasing the transmittance
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in particulate materials [159, 238].
We remark that the presented demonstration scenes (Figures 9.3 and 9.4) are intended to

serve as illustrative examples of potential uses of the proposed method in realistic image syn-
thesis applications. These applications may involve objects with distinct geometrical complex-
ities and be subjected to different illumination conditions. Furthermore, the depicted visual
aspects can be regarded as a small subset of the myriad of snow appearance changes that can
be predictively prompted by systematically varying the values of the material characterization
parameters considered in this section.
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Chapter 10

Conclusion

Material appearance modelling is an important and challenging area of study within the com-
puter graphics field [51]. In the last decades, much effort has been directed toward the devel-
opment of predictive models that can contribute not only to the advancement of realistic image
synthesis, but also to a broad scope of research initiatives. This is especially true when the
fidelity of modelled predictions can be comprehensively assessed.

It is in this context that we have presented the simulation framework discussed in this thesis.
Central to this framework is the SPLITSnow model. This is a novel, first-principles, light trans-
port model for snow, whose predictive capabilities have been extensively evaluated through
quantitative comparisons to measured data and qualitative comparisons to trends reported in
the literature. The results of these comparisons have shown that a high degree of fidelity has
been achieved. Accordingly, this has allowed for contributions to be made in a number of ap-
plication areas, which we summarize in the next section.

10.1 Contributions

The work presented in this thesis enabled a myriad of contributions to computer graphics
and related fields. Among these contributions, we can emphasize the development of the
SPLITSnow model itself [219]. The model supports two modes of execution. The first is the
spectrometric mode, whereby spectral reflectance (and transmittance) experiments may be con-
ducted throughout a number of spectral domains. These include not only visible light, but also
ultraviolet (UV) and infrared (IR) light as well. The second supported mode allows goniometric
experiments to be conducted. Experiments conducted in this mode typically focus on a fixed
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set of wavelengths at a time and collect a dataset of directional reflectance (or transmittance)
values for each wavelength.

Additionally, the model specifications presented in the original publication describing SPLIT-
Snow [219], which includes support for a number of snow characterization parameters such as
grain size, grain shape, facetness, temperature, sample thickness, water saturation and den-
sity, a number of extensions to the model have been presented in this thesis. The first of these
extensions allows for the inclusion of impurities to the snow sample. Both black carbon and
brown carbon impurities may be included. Both types of impurities may be specified as being in
suspension or sedimentation. The second extension introduces support for multi-layered snow
samples. This allows for a set of snow characterization parameter values to be specified for a
basal layer, as well as separate sets of characterization parameter values for additional layers
that represent subsequent snow falls. The third extension introduces support for a heteroge-
neous collection of snow grains to be specified within a virtual snow sample.

The framework described in this thesis also includes components that can be utilized to sup-
port specific graphics applications. For instance, we describe a method to incorporate spectrally-
varying data into a traditional computer graphics renderer [218]. This method enables the incor-
poration of spectrally-dependent phenomena into a traditional rendering pipeline. In addition
to this, we have also made the spectral transmittance database associated with the description
of this method available online [147].

The proposed framework may be employed to address open problems and to clarify miscon-
ceptions in the literature. These include, for instance, the issue addressed in Section 7.2.2 where
concomitant changes in both grain size and density lead to the repeated, erroneous statement
that transmittance increases with density [18].

To further showcase the applicability of the proposed framework to other fields, we have
employed it to study a variety of open problems. For example, we used it to examine electro-
magnetic (EM) radiation penetration depth in order to elucidate the conditions under which dry
slab avalanches may form [216]. (See also Appendix E.) Our findings indicated that grain size
and density contribute to subsurface weak layer formation, which is consistent with analytic
descriptions of crystal growth [42].

We also utilized the proposed framework to investigate the effect of snow grain properties
on reflectance [217]. (See also Appendix F.) In this study, we observed that facetness is an
important grain property in studies that attempt to estimate water content in a snowpack, and
that future studies may be improved by accounting for this property of snow.

More recently, we have employed the SPLITSnow framework to study how changes in snow
cover affect biological processes in plants at photosynthetically active wavelengths [18]. In
that work, we examined particular ratios of EM radiation that are potentially important to
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photobiological processes such as germination, the emergence of plant organs and cold tol-
erance. Our findings indicated that the net effect of snow melting and settling processes may
favour an increase in productivity of vegetation, a phenomenon commonly referred to as green-
ing [188, 224].

Finally, we have made the SPLITSnow model available for online use [145, 146], hence fa-
cilitating the reproduction of our results and enabling its use in interdisciplinary investigations
carried out by the research community at large. In the words of Roger D. Peng [168], “Repli-
cation is the ultimate standard by which scientific claims are judged.” It is our sincere hope
that future works will utilize the SPLITSnow model and incorporate the generated data into
their research projects. Indeed, as discussed in the literature [49, 76, 200], when the acquisition
of comprehensive measured datasets is challenging, high-fidelity modelled data may provide a
viable alternative.

10.2 Future Work

There are three main avenues for future work related to the research described in this the-
sis. The first is represented by extensions to the proposed framework. The second addresses
rendering enhancements. The third is associated with the use of the proposed framework in
interdisciplinary research initiatives. In the remainder of this section, we elaborate on these
possibilities.

10.2.1 Model Extensions

There are a number of model extensions to consider. First, although crystalline features are
built into the SPLITSnow formulation in the form of microfacets [44], it may be interesting to
add other crystal formations to the framework. Picard et al. [172] addressed this aspect to some
extent. More specifically, they observed variations in reflectance based on various crystal types.
That work, however, was focused on the IR domain.

Another potential benefit to incorporating differently shaped grains into the SPLITSnow
formulation would be to consider the alignment of the shaped grains. For instance, the orien-
tation of elongated snow grains or hexagonally-shaped snow crystals may allow for the repro-
duction of other effects. In particular, it may be that the bidirectional reflectance distribution
function (BRDF) varies azimuthally given the orientation of the snow crystals. This would
permit in silico experiments where the azimuthal component of the view direction is also of
importance and for circumstances where the reflectance varies with that component. It would
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be a step forward in the modelling of material appearance since most of the works in this area,
with a few noteworthy exceptions (e.g., [175, 236]), usually assume the reflective behaviour of
natural materials to be isotropic, i.e., azimuthally symmetric [16].

In our in silico goniometric (BRDF) experiments, we assumed the snow samples to be homo-
geneous and single-layer materials. In the future, we intend to relax these assumptions. This is
useful for scenarios where the bulk of a snowpack is composed of a blend of ice crystals or old,
smooth grains with a thin layer of faceted snow on the surface. There are some technical issues
to be overcome for multi-layered BRDF support. For instance, the entirety of the BRDF may
need to be cached from lower layers so that it could be sampled. Note that the azimuthal com-
ponent of the angle of incidence has an effect on bidirectional reflectance as can be observed
in the IR spectrum (e.g., Figure F.2 in Appendix F). A potential solution to this issue would
be to conduct “nested” simulations, whereby light propagating to lower layers will recursively
execute a simulation with the lower-layer’s parameter values.

Another avenue for expanding the scope of applications of the proposed framework would
be to extend the multi-layered approach (discussed in Section 4.4) to represent diverse materials.
For instance, rather than a multi-layered snowpack having snow as the basal layer, the basal
layer may be specified as another material such as soil or plant matter. For the remote sensing
community, this would aid in the identification of terrains covered by a relatively thin layer
of snow. For the field of computer graphics, this would enable the predictive rendering of
smooth transitions from a snow cover to a substrate material as the former recedes and becomes
progressively thinner.

10.2.2 Rendering Enhancements

In the future, we intend to include more samples in the spectral database employed by the
proposed visualization process (Chapter 5). We remark that differences in snow characteriza-
tion values have an effect on the spectral transmittance curves. By increasing the number of
characterization parameter values employed, a greater variety of snowpack conditions will be
available for use in image synthesis pipelines.

We also intend to include the spectral reflectance curves in the database, as snow sample
characterization also has an effect on the reflectance [137]. It would also be valuable to include
more snow sample parameters, such as liquid water content, to the combined transmittance
and reflectance database proposed here. This would allow for an even greater number of virtual
snow samples to be included into image synthesis pipelines.

Finally, we remark that the SPLITSnow model is a local illumination model. Consequently,
macroscopic geometric features, such as sastrugi [95], are not addressed in its formulation.
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In the future, it would be interesting to investigate the incorporation of algorithms to en-
able the physically-based rendering of these features as well as view-dependent effects such
as sparkles [56, 246]. The recent works by Nguyen et al. [150, 151] may be used to support
initiatives aimed at the predictive visual depiction of these effects.

10.2.3 Interdisciplinary Investigations

As highlighted earlier, predictive simulations of light interactions with snow grains are of in-
terest for remote sensing and related fields. An understanding of how various snow grain char-
acteristics affect reflectance and transmittance is necessary to identify and quantify proper-
ties of natural snowpacks. Accordingly, the proposed framework can be employed to assess
snowpacks with different characterizations so that improved estimates of their morphological
features can be obtained.

In addition to this, the extensions discussed in Sections 4.4–4.6 may be utilized to conduct fu-
ture in silico studies. For example, the multi-layer extension that was introduced in Section 4.4,
could be employed to study the effect of new-fallen snow on reflectance. This, in turn, could
lead to better estimates of water content in a snowpack where such conditions are present.
The presence of impurities, which was examined in Section 4.6, can be utilized in climate stud-
ies. More specifically, it would be interesting to attempt to quantify the effects of impurities
deposited in pristine snow due to forest fires or due to dust storms. Lastly, the SPLITSnow for-
mulation quantifies both reflectance and transmittance response values. It therefore implicitly
accounts for absorptance. Future projects that make use of these values could be valuable in
studies of increased heat transfer to and from snowpacks due to biomass burning [99].

In order to foster new advances in this area, the scientific community needs to provide con-
tinuing support for field studies aimed at the collection of spectral datasets on snow radiometric
responses to distinct illumination and environmental conditions. To increase their usefulness,
these datasets should include detailed characterizations of the measured snow samples to facil-
itate accurate reproduction of the spectral responses through in silico experiments.

Once the predictive capabilities of a simulation framework are established, it can be used to
generate comprehensive in silico datasets to support the investigation of open scientific prob-
lems for which actual data cannot be obtained in a cost-effective manner due to technical and/or
logistical limitations. For example, variations on the light transmission profiles of snowpacks
located at the top of mountains during different times of the year. These in silico datasets could
also be “fed” into artificial intelligence or machine learning algorithms dedicated to climate
change studies and predictions [140].
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We believe that the pairing of measurement efforts with in silico investigations will be in-
strumental to strengthen the knowledge foundation required for the development of more ef-
fective technologies aimed at the remote sensing of snow and snow-covered targets. Viewed
in this context, the work described in this thesis also aims to serve as a catalyst for future
synergistic research initiatives in these increasingly relevant areas of research.
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Pointer, D. C. Rich, F. Viénot, L. Whitehead, and J. H. Wold. Colorimetry. Technical
Report CIE 015:2018, International Commission on Illumination (CIE), 2018.

[38] V. S. Castillo. Realistic rendering of blue ice. Master’s thesis, Bournemouth University,
Dorset, UK, 2009.

[39] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annual Review of
Fluid Mechanics, 30(1):329–364, 1998.

[40] A. Ciani, K. U. Goss, and R. P. Schwarzenbach. Light penetration in soil and particulate
materials. Eur. J. Soil Sci., 56:561–574, 2005.

[41] S. C. Colbeck. An overview of seasonal snow metamorphism. Rev. Geophys., 20(1):45–61,
1982.

[42] S. C. Colbeck. Snow-crystal growth with varying surface temperatures and radiation
penetration. J. Glaciol., 35(119):23–29, 1989.

[43] S. C. Colbeck. A review of sintering in seasonal snow. Technical Report 97-10, U.S. Army
Cold Regions Research and Engineering Lab, Hanover, NH, USA, December 1997.

[44] R. L. Cook and K. E. Torrance. A reflectance model for computer graphics. ACM T.
Graphic., 1(1):7–24, 1982.

[45] H. Curl, Jr., J. T. Hardy, and R. Ellermeier. Spectral absorption of solar radiation in alpine
snowfields. Ecology, 53(6):1189–1194, 1972.

140



[46] B. Curless and M. Levoy. A volumetric method for building complex models from range
images. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’96, page 303–312, New York, NY, USA, 1996. Association for
Computing Machinery.

[47] F. Dagenais, J. Gagnon, and E. Paquette. An efficient layered simulation workflow for
snow imprints. Visual Comput., 32(6):881–890, 2016.

[48] M. G. G. de Camargo, K. Lunau, M. A. Batalha, S. Brings, V. L. G. de Brito, and L. P. C.
Morellato. How flower colour signals allure bees and hummingbirds: A community-level
test of the bee avoidance hypothesis. New Phytologist, 222(2):1112–1122, 2019.

[49] A. Ding, Z. Jiao, Y. Dong, X. Zhang, J. I Peltoniemi, L. Mei, J. Guo, S. Yin, L. Cui, Y. Chang,
and R. Xie. Evaluation of the snow albedo retrieved from the snow kernel improved the
Ross-Roujean BRDF model. Remote Sens., 11(13):1611, 2019.

[50] F. Domine, R. Salvatori, L. Legagneux, R. Salzano, M. Fily, and R. Casacchia. Correlation
between the specific surface area and the short wave infrared (SWIR) reflectance of snow.
Cold regions science and technology, 46(1):60–68, 2006.

[51] J. Dorsey, H. E. Rushmeier, and F. X. Sillion. Digital modeling of material appearance.
Morgan Kaufmann/Elsevier, New York, USA, 2008.

[52] J. Dozier, R. E. Davis, and A. W. Nolin. Reflectance and transmittance of snow at high
spectral resolution. In Geoscience and Remote Sensing Symposium (IGARSS), pages 662–
664. IEEE, 1989.

[53] J. Dozier and T. H. Painter. Multispectral and hyperspectral remote sensing of alpine
snow properties. Annu. Rev. Earth Pl. Sc., 32:465–494, 2004.

[54] M. Dumont, O. Brissaud, G. Picard, B. Schmitt, J.-C. Gallet, and Y. Arnaud. High-accuracy
measurements of snow bidirectional reflectance distribution function at visible and NIR
wavelengths — Comparison with modelling results. Atmos. Chem. Phys., 10(5):2507–2520,
2010.

[55] R. V. Dunkle and J. T. Bevans. An approximate analysis of the solar reflectance and
transmittance of a snow cover. J. Meteorol., 13(2):212–216, 1956.

[56] F. Fan and G. V. G. Baranoski. A study on rendering techniques to visually represent
sparkles. Technical Report CS-2024-02, University of Waterloo, Waterloo, Canada, 2024.

141



[57] P. Fearing. Computer modelling of fallen snow. In Proceedings of the 27th Annual Con-
ference on Computer Graphics and Interactive Techniques (SIGGRAPH’00), pages 37–46.
Association for Computing Machinery, 2000.

[58] J. A. Ferwerda. Three varieties of realism in computer graphics. In Human vision and
electronic imaging VIII, volume 5007, pages 290–297. SPIE, 2003.

[59] R. P. Feynman. Quantum Electrodynamics. Advanced Book Classics Series. Addison-
Wesley, Reading, MA, USA, 1998.

[60] C. Fierz, R. L. Armstrong, Y. Durand, P. Etchevers, E. Greene, D. M. McClung,
K. Nishimura, P. K. Satyawali, and S. Sokratov. The international classification for sea-
sonal snow on the ground. Technical Report 83, UNESCO-IHP, Paris, France, 2009.

[61] M. G. Flanner, J. B. Arnheim, J. M. Cook, C. Dang, C. He, X. Huang, D. Singh, S. M. Skiles,
C. A. Whicker, and C. S. Zender. SNICAR-ADv3: A community tool for modeling spectral
snow albedo. Geosci. Model. Dev., 14(12):7673–7704, 2021.

[62] D. Foldes and B. Benes. Occlusion-based snow accumulation simulation. In John
Dingliana and Fabio Ganovelli, editors, Workshop in Virtual Reality Interactions and Phys-
ical Simulation “VRIPHYS” (2007), pages 35–41. The Eurographics Association, 2007.

[63] Alain Fournier. From local to global illumination and back. In Proceedings of Eurographics
Workshop on Rendering, pages 127–136, Dublin, Ireland, June 1995.

[64] J. R. Frisvad, N. J. Christensen, and H. W. Jensen. Computing the scattering properties of
participating media using Lorenz-Mie theory. ACM T. Graph., 26(3):60:1–10, July 2007.

[65] B.-C. Gao and A. F. H. Goetz. Column atmospheric water vapor and vegetation liq-
uid water retrievals from airborne imaging spectrometer data. J. Geoph. Res.-Atmos.,
95(D4):3549–3564, 1990.

[66] S. D. Gedney. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Elec-
tromagnetics, volume 27 of Synthesis digital library of engineering and computer science.
Morgan & Claypool, San Rafael, CA, USA, 1st edition, 2011.

[67] R. W. Gerdel. Penetration of radiation into the snow pack. EOS T. Am. Geophys. Union,
29(3):366–374, 1948.

[68] S. Gerland, G. E. Liston, J.-G. Winther, J. B. Ørbæk, and B. V. Ivanov. Attenuation of solar
radiation in Arctic snow: Field observations and modelling. Ann. Glaciol., 31:364–368,
2000.

142



[69] H. Ghiradella, D. Aneshansley, T. Eisner, R. E. Silberglied, and H. E. Hinton. Ultraviolet
reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing
scales. Science, 178(4066):1214–1217, 1972.

[70] J. C. Giddings and E. LaChapelle. Diffusion theory applied to radiant energy distribution
and albedo of snow. J. Geoph. Res., 66(1):181–189, 1961.

[71] S. Gilardoni, E. Vignati, and J. Wilson. Using measurements for evaluation of black carbon
modeling. Atmos. Chem. Phys., 11(2):439–455, 2011.

[72] A. S. Glassner. Principles of Digital Image Synthesis, volume 1. Morgan Kaufmann Pub-
lishers, Inc., San Francisco, USA, 1995.

[73] G. Gouesbet and G. Gréhan. Generalized Lorenz-Mie Theories. Springer, Cham, Switzer-
land, 3rd edition, 2023.

[74] R. O. Green, J. Dozier, D. Roberts, and T. Painter. Spectral snow-reflectance models for
grain-size and liquid-water fraction in melting snow for the solar-reflected spectrum.
Ann. Glaciol., 34:71–73, 2002.

[75] R. O. Green, M. L. Eastwood, C. M. Sarture, T. G. Chrien, M. Aronsson, B. J. Chippendale,
J. A. Faust, B. E. Pavri, C. J. Chovit, M. Solis, M. R. Olah, and O. Williams. Imaging
spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS). Remote
Sens. Environ., 65(3):227–248, 1998.

[76] D.P. Greenberg, K.E. Torrance, P. Shirley, J. Arvo, E. Lafortune, J.A. Ferwerda, B. Walter,
B. Trumbore, S. Pattanaik, and S.-C. Foo. A framework for realistic image synthesis. In
Proceedings of the 24th annual conference on computer graphics and interactive techniques,
pages 477–494. Association for Computing Machinery, 1997.

[77] T. C. Grenfell and S. G. Warren. Representation of a nonspherical ice particle by a col-
lection of independent spheres for scattering and absorption of radiation. J. Geoph. Res.-
Atmos., 104(D24):31697–31709, 1999.

[78] D. C. Gross. Report from the fidelity implementation study group. In Spring Simulation
Interoperability Workshop, 1999.
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[80] D. Güçer and H. B. Özgüç. Simulation of a flowing snow avalanche using molecular
dynamics. Turk. J. Electr. Eng. Co., 22(6):1596–1610, 2014.

[81] O. L. Hadley and T. W. Kirchstetter. Black-carbon reduction of snow albedo. Nat. Clim.
Change, 2(6):437–440, 2012.

[82] H. Haglund, M. Andersson, and A. Hast. Snow accumulation in real-time. In The Swedish
Chapter of Eurographics (SIGRAD 2002), pages 11–15. Linköping University Electronic
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X. Zhang, S. Yin, L. Cui, L. Mei, and Y. Chang. Development of a snow kernel to better
model the anisotropic reflectance of pure snow in a kernel-driven BRDF model frame-
work. Remote Sens. Environ., 221:198–209, 2019.

[105] Z. Jin, T. P. Charlock, P. Yang, Y. Xie, and W. Miller. Snow optical properties for different
particle shapes with application to snow grain size retrieval and MODIS/CERES radiance
comparison over Antarctica. Remote Sens. Environ., 112(9):3563–3581, 2008.

[106] G. M. Johnson and M. D. Fairchild. Full-spectral color calculations in realistic image
synthesis. IEEE Comput. Graph., 19(4):47–53, 1999.

[107] I. T. Jolliffe. Principal component analysis. Springer-Verlag, New York, New York, 2nd

edition, 2002.

[108] J. H. Joseph, W. J. Wiscombe, and J. A. Weinman. The delta-Eddington approximation for
radiative flux transfer. J. Atmos. Sci., 33(12):2452–2459, 1976.

[109] A. Jubert. Simulation du transport de neige. Master’s thesis, Université de Montréal,
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Appendix A

Optical Concepts and Terminology

This appendix describes the equations governing the transmission of EM radiation (light) from
one medium into another that are particularly relevant for the work described in this thesis.
In Section A.1, we provide the equations used to determine the fraction of EM radiation that
is refracted vs. reflected at the interface boundary between two media. In Section A.2, we
provide the equations to compute Snell’s law. For many elementary purposes, the simplified
version of Snell’s law (Equation 2.3) may be employed. However, for the predictive simulation
of light transport through various media, the equations that incorporate the complex index of
refraction may be beneficial to use. More detailed descriptions of the equations provided in this
appendix can be found in more comprehensive texts in this area such as the book by Pedrotti
and Pedrotti [167].

We remark that both the real and complex parts of the indices of refraction are functions
of the wavelength (λ) of light. For conciseness, this dependency is omitted in the equations
presented in this chapter.

A.1 Fresnel Equations

When light passes from one medium into a second medium, some fraction of the light will be
reflected back into the first medium while the rest will be refracted into the second medium.
The ratio of light reflected at a plane is given by the Fresnel equations [167]. These equations
are dependent upon the indices of refraction of the materials, the angle of incidence and the
polarization of the incident light.
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The parallel (transverse magnetic) Fresnel coefficient (Fr∥) and perpendicular (transverse
electric) Fresnel coefficient (Fr⊥) for reflection of polarized light are given by the following
equations:

Fr∥ =
cos θi −

√
η2 − sin2 θi

cos θi +
√
η2 − sin2 θi

, (A.1)

and Fr⊥ = −η
2 cos θi −

√
η2 − sin2 θi

η2 cos θi +
√
η2 − sin2 θi

, (A.2)

where θi is the angle of incidence for the incoming ray and η = ηt/ηi is the relative index of
refraction for complex indices of refraction ηi and ηt. The respective reflectivities are given
by R∥ = F2

r∥
and R⊥ = F2

r⊥
. When one considers unpolarized light, which is the aim in most

computer graphics applications [198],R∥ andR⊥ are averaged [167] to compute a single Fresnel
coefficient.

A.2 Snell’s Law

Recall from Section 2.1.4 of Chapter 2, that the form of the complex index of refraction primarily
used in this thesis is given by Equation 2.4. We repeat it here for convenience. Namely,

η = n+ ik. (A.3)

Another representation of the complex index of refraction is:

η = n(1 + iK), (A.4)

where η and n are the same as in Equation 2.4, and K is related to k as follows:

k = nK. (A.5)

Various names have been given to k and K in the literature. We continue to refer to k as the
complex part of the index of refraction and refer to K as the absorption index [167]. We note
that the absorption index, K, is employed in the remaining equations to be presented in this
section.

Snell’s law [167] is used to describe light refraction at a given interface between the two
media, and the geometry employed in its formulation is schematically presented in Figure 2.5.
This law is expressed as:

sin θi
sin θt

=
nt

ni

(A.6)
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where nt represents the real part of the index of refraction for the transmitted material, ni

represents the real part of the index of refraction for the incident material, θi represents the
angle of incidence which is measured away from the normal to the surface, and θt represents
the angle of refraction, which is measured away from the direction opposite to the normal of
the surface.

It is worth noting that, when the complex index of refraction is employed at an interface
boundary between one or more conductors, the angle of refraction, θt, may be evaluated as
follows [167]:

cos θt =
nq(cosψ −K sinψ)

sin2 θi +n2q2(cosψ −K sinψ)2
, (A.7)

where η = n(1 + iK) is the representation of the index of refraction given in Equation A.4.
and:

q =

(1− 1−K2

n2(1 +K2)2
sin2 θi

)2

+

(
2K

n2(1 +K2)2
sin2 θi

)2
 1

4

, (A.8)

and

ψ =
1

2
tan−1

(
2K sin2 θi

n2(1 +K2)2 − (1−K2) sin2 θi

)
. (A.9)
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Appendix B

Average Particle Distance Computation

In this appendix, we outline the main steps involved in the computation of the mean distance
between grains, which is denoted by d and used in Equation (4.1). We remark that this quan-
tity is dependent upon the density (D) of the snow sample. We begin with a treatment for
homogeneous virtual snow samples in Section B.1, and then generalize this formulation to het-
erogeneous snow samples in Section B.2.

B.1 ParticleDistanceComputation forHomogeneous Sam-
ples

We begin by converting density to porosity, which is denoted, P. Porosity is a unitless value
that represents the volume fraction of a snow sample not occupied by its constituent grains.
Note that the porosity only excludes the grains, i.e., it includes all interstitial media such as
air and water. Computing porosity is accomplished using the method described by Kinar and
Pomeroy [117] with the following expression:

P = 1− D

Dice

, (B.1)

where D is the density of snow and Dice is the density of ice. The density of ice varies with
temperature. This necessitates adding snow temperature, T , as an input parameter to the
SPLITSnow model. From this, the density of ice is linearly interpolated using the data available
in the CRC Handbook of Chemistry and Physics [187].
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The volume fraction of the snow grains within the snow sample is denoted Vg. This value
is the complement of the porosity, P, which can accordingly be expressed as:

Vg = 1−P. (B.2)

Now, to compute the mean distance between snow grains, we employ the following equation
[115]:

d =
1

VgK
, (B.3)

where K represents the cross-sectional area of snow grains per unit volume as seen in the
direction of the ray. This quantity (which has units [m−1]) is defined as:

K =

∫
X

N(χ)G(χ) dχ, (B.4)

where X represents the set of all grain geometries, χ is a member of that set, N(χ) represents
the number probability density of picking a grain with geometry χ, and G(χ) is the cross-
sectional area of χ projected onto the plane. The integral defining K is separable [115] into:

K = K1K2, (B.5)

where K1 models the grain size distribution and K2 accounts for shape. For uniformly dis-
tributed grain sizes, an analytic solution for K1 can be obtained by simplifying the following
definite integral:

K1 =

∫ µmax

µmin
µ−2P(µ) dµ∫ µmax

µmin
µ−1P(µ) dµ

, (B.6)

where P(µ) = 1/ (µmax − µmin) is the probability density function for a uniform distribution
in the range of [µmin, µmax]. This simplifies to:

K1 =
µmax − µmin

µmin µmax

(
ln(µmin)− ln(µmax)

) . (B.7)

For normally distributed sphericity, K2 reduces to [115]:

K2 =

∫ Ψmax

Ψmin
ℵ(Ψ)φ

(
Ψ, σ2

Ψ

)
(Ψ) dΨ

4
∫ Ψmax

Ψmin
φ(Ψ) dΨ

, (B.8)

166



where φ(ξ, σ2)(ξ) is the probability density function (PDF) for a normally distributed random
variable with mean ξ and standard deviation of σ, ℵ(Ψ) is the surface area to volume ratio of a
prolate spheroid with s = 2b = 1 (where b is the semi-major axis), and Ψ represents inscribed
circle sphericity [183]. The quantity ℵ(Ψ) is given by [115]:

ℵ(Ψ) = 3

(
1 +

sin−1
√
1−Ψ4

Ψ2
√

1−Ψ4

)
. (B.9)

The limits of integration for Equation (B.8), Ψmin and Ψmax, are used to restrict the numeric so-
lution to the specified range of grain sphericities. Accordingly, there are four model parameters
that categorize the sphericity, namely Ψmin, Ψmax, σΨ, and Ψ.

Note that even though it is numerically complex to calculate d given the density, this oper-
ation only needs to be performed once as a precomputation at the beginning of a simulation. It
can then be used to compute the distance to the next grain in the ray’s path using Equation (4.1).

B.2 Particle Distance for Heterogeneous Samples

Accommodating heterogeneous samples requires only a small change to the mean distance
computation [115]. Namely, that the computation of d must be performed for each grain type
in the heterogeneous sample. More specifically, the value of K in Equation B.3 must be scaled
by the volume fraction of the specific grain. Thus, for the mth grain, Equation B.3 becomes:

dm =
1

VgmKm

, (B.10)

where Vgm is the concentration of themth grain andKm is the value ofK computed for themth

grain. Note that Vgm is computed by multiplying the total concentration, Vg, by the fraction of
snow grains that are of the mth type. The value of dm is used only for grains of the mth type.
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Appendix C

Parameter Input Conversion Methods

In this appendix, we examine how the representation of certain model parameters may be mod-
ified for consistency with the terminology employed in related field or laboratory studies. More
specifically, in Section C.1, we provide a method to convert from (total) water content to water
saturation. Then in Section C.2, we provide a method to convert the density of a wet sample to
the density of a dry sample.

C.1 Water Fraction to Water Saturation Conversion

In this section, we outline the derivation of Equation 4.9 discussed in Chapter 4. Recall from
Section 4.3, that as light propagates through the interstitial (pore space) medium, it will pass
either through water or air until it intersects the next grain of snow. For simulation purposes,
whether the interstitial medium is water or air is stochastically determined by a Bernoulli trial.
The saturation, S, is the fraction of the pore space that is composed of liquid water. As pointed
out in Section 4.3.5, sometimes the (free or liquid) water content in a sample is provided as a
fraction of the entire volume of snow. Thus, we want to determine a relation to convert from
(total) water content, W, to saturation, S.

Recall (Section 4.3.1) that we use the symbolD to represent the density of a sample in the dry
state, i.e., without water present in the pore space. Accordingly, this quantity can be expressed
as:

D =
vpDice

V
, (C.1)

where V is an arbitrary volume of a virtual snow sample, v is the mean volume of a snow grain
in the sample, p is the number of grains in an arbitrary volume of snow and Dice is the density
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of ice. Note that vp is the volume occupied by ice in V in [m3], and multiplying vp by the
density, Dice, yields the mass of the volume. For convenience, we will use the symbol Vice to
represent the volume of the grains, i.e.:

Vice = vp. (C.2)

Returning to Equation C.1, we solve for the number of grains, p, which yields:

p =
DV

Dicev
. (C.3)

Now let’s consider the space in volume V that is not occupied by the ice grains (the pore space),
which we denote by Vps. This volume is equal to the volume of V after removing the volume
of ice grains, Vice:

Vps = V −Vice. (C.4)

We now have the terms required to define the saturation, S, with respect to the total water
content, W:

S =
WV

Vps

. (C.5)

In Equation C.5, we scale the total water content by the total volume, V, and divide it by the
volume occupied by the pore space, Vps. Next, we simplify Equation C.5. First, we substitute
the Vps by Equation C.4:

S =
WV

V −Vice

. (C.6)

We then substitute Vice by Equation C.2 to obtain:

S =
WV

V − vp
. (C.7)
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Finally, we substitute p by Equation C.3 and simplify:

S =
WV

V − v DV
Dicev

=
WZZV

ZZV
(
1− AvD

DiceAv

)
=

W

1−
(

D
Dice

)
=

W
Dice−D
Dice

=
DiceW

Dice −D
, (C.8)

which corresponds to Equation 4.9.
Note that Dice represents the density of solid ice, whereas D represents the density of a

snowpack consisting of solid ice grains dispersed in a less dense medium, with the space be-
tween the grains (pore space) occupied by air. Therefore,Dice > D for all snowpacks containing
a non-zero amount of pore space.

C.2 “Wet” to “Dry” Snow Density Conversion

In this section, we outline a formulation to convert between sample characterizations that in-
clude (liquid) water content in their density specification, namely “wet” snow samples, and
those that do not. We begin with the work on Kinar and Pomeroy [117], who provide a method
to compute the porosity, P, of a snow sample:

P = 1− D

Dice

, (C.9)

where D is the density of snow and Dice is the density of ice. Let the volume fraction of the
“wet” snow sample that is occupied by the ice grains be denoted X. This is the complement of
the pore space, and it is given by:

X = 1−P. (C.10)

Recall that the SPLITSnow model parameter for saturation represents the fraction of the
pore space that is occupied by water and is denoted S (Chapter 4). Given the saturation and
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the porosity, the volume fraction of the total volume that is occupied by water, denoted by Y,
is given by the expression:

Y = PS. (C.11)

The density of the “wet” sample has two components: the density of the water in the sample
scaled by the fraction of the sample occupied by water, and the density of the ice grains in the
sample scaled by the fraction of the sample that is composed of these grains. Accordingly, this
quantity can be expressed as:

Dwet = DiceX +DwaterY, (C.12)

where Dice is the density of ice and Dwater is the density of water. Substituting X and Y from
equations C.10 and C.11, respectively, yields:

Dwet = Dice (1−P) +Dwater (PS) , (C.13)

which simplifies to:
Dwet = Dice −PDice +DwaterPS. (C.14)

Substituting Equation C.9 into Equation C.14 yields:

Dwet = Dice −
(
1− D

Dice

)
Dice +Dwater

(
1− D

Dice

)
S. (C.15)

Simplifying Equation C.15 yields an expression to convert a “dry” sample, where the density (D)
is specified separately from the saturation (S) into one whose density is specified as a combined
total of both frozen ice grains and liquid water content. This yields:

Dwet = D +

(
1− D

Dice

)
DwaterS. (C.16)

Reordering the terms in Equation C.16 provides an expression to determine D from Dwet:

D = Dwet −
(
1− D

Dice

)
DwaterS. (C.17)
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Appendix D

Determining Virtual Snow Parameter
Values from Recorded Characterization
Data

In this appendix, we present a brief description of the sample characterization values provided
along with the measured spectral datasets [54, 169, 190] and the parameter values used to spec-
ify the corresponding virtual snow samples (see Tables 7.1, 7.2, 7.4 and 7.5) that were used
in our simulations. To select the latter, we first consulted the sample characterizations that
were provided along with the measured spectral data. However, some amount of interpreta-
tion of the characterization data was required. For example, the sample thickness reported in
the SISpec database [190] only reflects the top layer of snow. The same is true for the grain
types reported in tabular format on the SISpec website1. Fortunately, for the selected SISpec
snow samples examined in this thesis, a snow profile diagram (e.g., see Figure 4.6) is provided
alongside the measured reflectance datasets. Unfortunately, similar profile diagrams do not ac-
company the datasets provided by Dumont et al. [54] and Perovich [169]. Instead, we relied
upon the description of the samples in their respective works. In all cases, when employing the
SPLITSnow model to conduct our in silico experiments that make direct comparisons to these
datasets [54, 169, 190], we incorporated the associated characterization data when selecting the
simulation parameter values. In the remainder of this appendix, we outline the rationale be-
hind the selection of parameter values for each virtual sample considered in the quantitative
and qualitative evaluation of the predictive capabilities of the proposed framework.

We begin with Table 7.1, which provides the parameter values employed in the characteri-
1https://sispec.cnr.it/
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zation of the virtual snow sample considered in our in silico experiment to generate reflectance
curves that are compared with the measured Sample 3 that was provided by Dumont et al. [54].
We remark that a detailed characterization of the sample was not provided with the measured
reflectance dataset. In fact, Dumont et al. state that their own “grain size measurements are too
rough to be suitable as inputs” when they compared their measured results against values ob-
tained from simulations using models provided by Mishchenko et al. [139] and Picard et al. [172].
However, in their comparisons to these models, they employed grain size inputs ranging from
100–1000 µm. Furthermore, they state that the sample consisted of “rounded grains and mixed
forms” that are “rounded and faceted.” We therefore elected to consider mostly spherical snow
grains with a moderately low facetness that are within the aforementioned size range in our
simulations. Dumont et al. also remark that their Sample 3 consisted of “new wet snow.” How-
ever, they also indicate that the extracted sample was placed in a cold room where it “refroze.”
Consequently, a small quantity of liquid water was included in the virtual snow characteriza-
tion. Temperature and density were not measured by Dumont et al.. We, therefore, employed
values that are within physically valid ranges for these characteristics [60]. Lastly, we remark
that the sample extracted by Dumont et al. was 12 cm thick.

Next, we turn our attention to datasets obtained from the SISpec database [190]. Referring
to Sample 195, Table 7.2 indicates that a thickness of 10 cm was used to conduct our in silico
experiments with the SPLITSnow model. However, the SISpec database indicates that the sam-
ple thickness is only 2.8 cm. Note that the value of 2.8 cm is indicative of the thickness of the
top layer of snow, and not the entire sample. The examination of its associated snow profile
diagram (available on the SISpec website) indicates that the top layer is 2.8 cm thick and that
there are several additional layers of snow beneath this surface layer. Furthermore, this has
been confirmed by the SISpec leading administrator [191]. Returning to Sample 195, we elected
to use a sample thickness of 10 cm, which includes the total thickness of all layers of the sample.

In addition to using the snow profile diagram to select a value for the thickness parameter,
other parameter values were guided by the data provided in the snow profile diagram. These
include density, grain size and temperature. Indeed, for Sample 195 [190], the top layer con-
tained 80% rounded forms that were 0.5 mm-sized crystals and 20% irregular crystals that were
0.8 mm in size. The second layer contained large rounded grains (0.8 mm), while the third layer
contained small rounded grains (0.5 mm). The third layer has the greatest thickness (≈ 5 cm).
Consequently, we elected to use a larger range of grain sizes. The density was set to 340 kgm−3,
which reflects the density of the thickest layer, and the temperature was set to -3◦C. Note that
-3◦C is within the range of temperatures reported for the snowpack, which is much warmer
than the air temperature that was reported to be -15◦C.

A similar process was followed for Sample 197 [190]. The parameter values employed in the
characterization of this sample are presented in Table 7.4. Its profile diagram indicates that the
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total thickness of all layers is 19 cm. Consequently, we used this value as an input parameter
to the SPLITSnow model. We elected to use a grain size parameter value range of 400–1000 µm
since the bulk of the sample consists of 500–1000 µm grains, with only a thin layer consisting of
smaller grains. Similarly, we used a relatively low number of faceted crystals, i.e., a parameter
value range of 0.2–0.4, since the sample’s layers consisted of mostly rounded grains. The profile
diagram only indicates a numeric density value for two of the four layers. More precisely,
180 kgm−3 for the second layer, and 320 kgm−3 for the third layer. However, three of the four
layers (including the third layer) have a symbolic indication [60] that the density is in the range
of 175–390 kgm−3. Therefore, we elected to use a density value of 300 kgm−3 as a parameter
value for generating the corresponding simulated curve. Lastly, we used a temperature of -1◦C,
which corresponds to the temperature measured within the second layer.

Finally, for the virtual sample whose characterization is provided in Table 7.5, we used as
reference the values provided by Perovich [169] in its description of the sample obtained on
January 18, which for this discussion we will label P18. Sample P18 was composed of rounded
grains. More precisely, for the thickness and grain size range of the sample, we assigned the
values specified in Perovich’s description, namely 11 cm and 400–1000 µm, respectively. For
its density, we selected a value, 300 kmm−3, that corresponds to the value associated with the
middle portion of sample P18 as also reported by Perovich [169]. As for the temperature of
sample P18, although it was not measured by Perovich, based on his description of the meta-
morphic conditions of sample P18, we elected to set the temperature of virtual sample to -1◦C,
a value close to the snow freezing point.
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Appendix E

Case Study: Avalanche Slab Failure

In this appendix, we discuss a case study involving the use of the proposed framework to ad-
vance the current knowledge about light penetration into snowpacks. It is expected that a
better understanding of this phenomenon will be instrumental to improve the forecasting of
the conditions that facilitate the formation of slab avalanches.

Avalanches are masses of snow that rapidly descend sloped terrain. In fact, they can be clas-
sified as a complex type of ground failure involving snow [222]. They are a hazard to human wel-
fare. For instance, they have been known to cause more deaths annually in the USA than from
other hazards such as earthquakes and landslides [222]. There are also economic consequences
incurred by uncontrolled avalanches, notably to the forestry sector and to transportation cor-
ridors, which include highways and railways [203]. In addition to the destruction of property,
there are great financial losses each year due to delays in transportation [100]. Avalanche de-
tection [166] and prediction [222] can help to minimize these negative consequences. Studying
the conditions that affect the release of a snow slab precipitating an avalanche can assist in the
development of snow failure predictions.

Avalanches can be categorized as being either wet or dry, depending upon the quantity
of moisture in the snowpack [3] and can be further subdivided into two distinct types of for-
mations. The first type, commonly referred to as loose snow avalanches [25], are initiated by
snow accumulations that lack cohesion. When the slope angle is steeper than the angle of re-
pose, then an avalanche may occur after a localized area of snow exhibits failure and begins to
progress downslope. The failure progresses in an inverted V-shape when loose snow encoun-
ters additional cohesionless snow in its path. This type of avalanche presents a lower degree of
hazard since occurrences are comparatively easy to predict [222]. The second type of avalanche
is known as a dry slab avalanche. For this type of avalanche, a cohesive slab of snow on the
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scale of 10’s of meters is released [193]. This cohesive slab rests on top of an extended plane of
weakness called a weak layer, which is composed of poorly bonded snow crystals. The slab can
be released due to a sudden, localized loading, such as from a skier, from gradual, precipitous
loading or spontaneously, from changes in the snowpack properties such as warming [193].
The primary difference between the triggering methods is the rate of loading. Upon a trigger-
ing event, the stress on a snow slab exceeds the bonding strength of the weak layer that is
holding it in place and a catastrophic failure occurs.

As mentioned above, the weak layer is composed of snow crystals with low bonding. The
weak layer may form from various types of crystals including surface or depth hoar [193],
graupel or new-fallen low-density stellars [25], or it may be comprised of near-surface faceted
crystals [25, 193]. In particular, a significant fraction of slab avalanche accidents are formed with
weak failure planes consisting of near-surface faceted crystals [25, 101]. After the formation of
the weak layer, subsequent snowfalls bury the weak layer and form an upper cohesive slab.

In this case study [216], we focus upon the formation of near-surface faceted crystals, i.e.,
the formation of a weak layer before it is buried by a cohesive surface layer. For near-surface
faceted crystals to form, impinging light must penetrate to a depth below the surface of the
snowpack. For snowpacks with a sufficient depth, this impinging light is scattered by the grains
until it is either reflected or absorbed. The absorbed radiation is the energy source that creates
temperature gradients and vapour pressure gradients within the snowpack. These vapour pres-
sure gradients drive the process of snow crystal metamorphism, whereby matter from snow
crystals is both vapourized and deposited between crystals as part of the radiation recrystal-
lization process [25, 42]. This phenomenon occurs at high elevations where solar radiation is
the strongest [42].

The penetration of solar radiation can be measured directly using a spectrophotometer
[24, 52, 68, 169]. However, despite current efforts, there are few transmittance datasets avail-
able in the literature. Some of these were obtained at locations where impurities were known
to affect the sample [169], which has a significant affect on the spectral characteristics of snow-
pack [232]. Other datasets were obtained using samples that were morphologically active due
to temperature changes [68]. None of these datasets were obtained in high altitude locations
where the conditions exist to form weak layers associated with slab avalanches. A lack of such
studies may be attributed to the risk of triggering a snow failure event by human loading [193],
difficulties to conduct transmittance measurements [70], including the placement of a measure-
ment device that can alter the radiation EM profiles in the vicinity of the sample [55].

In order to overcome these limitations and contribute to the current knowledge about light
penetration in snowpacks, we employed the SPLITSnow model, (Chapter 4) to conduct an in
silico study of light penetration into snow. By using measured spectral data as a reference and
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snow characterization values obtained from the literature, we performed experiments to inves-
tigate the light penetration depth for various snow samples. We remark that the SPLITSnow
formulation takes into account various characteristics of the grains, including the grain size
distribution, density and facetness, which are necessary for examining radiative transfer prop-
erties within snowpack.

The experiments in this case study assess the depth to which light penetrates into various
snowpack samples with distinct characteristics. To our knowledge, no such investigation has
been made available in the literature as of yet. By elucidating the light penetration depth for
various snowpack samples, we hope to assist in the effort of avalanche prediction, thus improv-
ing the circumstances governing human safety. In addition to the application of near-surface
faceted crystal formation via light propagation, the results of these experiments may also have
an impact on other areas such as on the blooming of ice algae [45] and on the radiation budget
of shallow lakes [170].

E.1 Avalanche Formation

As mentioned earlier, there are two distinct types of dry avalanches. These are loose snow
avalanches and dry slab avalanches. Loose snow avalanches occur when the slope angle is
steeper than the angle of repose and a small amount of snow becomes unsettled and begins to
progress downslope. This type of failure results in a characteristic inverted V-pattern, and it is
less difficult to predict [222]. Dry slab avalanches are comparatively more difficult to predict.
They are identified by the sudden release of a large slab of snow on the scale of 10’s of meters
across, and the released slab layer is usually less than one meter thick [193]. Given the gravity
of this second type of avalanche, we will focus on dry avalanches in this study. Figure E.1
illustrates the process.

There are a number of terms commonly used in the literature regarding dry slab avalanches.
The breakaway fracture point at the top of a dry slab avalanche is known as the crown, the
downslope fracture surface, which is usually overridden, is known as the stauchwall, and the
left and right edges are known as flanks [133]. As already described, the cohesive slab rests on
top of a layer of weakly bonded grains such as faceted crystals. Beneath this layer, there is a
basal layer of snow known as the substratum. This layer remains in place after a failure event.

Initiation typically begins with a loading event whereby a load is added to the surface of
the snowpack. This load can be prompted by precipitated or wind-blown snow, snow fallen
from a higher precipice or a human participating in a recreational activity such as skiing. The
weak layer separates from the slab (and possibly from the substratum) as a localized failure
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(a) (b)

Figure E.1: Illustration of the slab avalanche formation process. In (a), solar radiation permeates
to a depth within a snow pack. In (b), a layer of weakly bonded faceted snow crystals has been
formed at a depth within the snowpack. The absorption of the solar radiation and the ensuing
morphological changes that affect the sintering1 between the grains contribute to the formation
of this layer.

at the point of loading. This localized failure propagates as a shear fracture below the slab in
the plane of the weak layer. As a consequence of the shear stress, the large volume of snow
contained in the cohesive slab is released as a single formation. The crown and flanks remain
after the event and they can be observed after the mass of snow has progressed downslope.

We remark that the weak layer is initially formed either at the existing surface or at a depth
just beneath the surface. The formation process may create hoar crystals, such as hollow cups or
prisms [60], or solid faceted crystals. After formation, the weak layer is buried by further snow
accumulation which forms a dangerous cohesive slab. Since a significant fraction of avalanche
slabs have a bed surface consisting of faceted crystals [25, 101], we focus the attention of our
experiments on the formation of subsurface faceted crystals. In particular, we investigate the
light penetration depth of solar radiation since this radiation is the energy source which elicits
the morphological processes underlying crystal growth [42].

1Sintering is the formation of bonds between the grains of snow [43].
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E.2 In Silico Experimental Setup

Our in silico experiments computed the light penetration depth through various natural snow
samples. Each sample was selected with distinct characterization values that impact light pen-
etration depth in snowpack. For each sample, a directional-hemispherical transmittance ex-
periment was performed. Our experiments focused on the spectral domain of 400–1500 nm
since the constituent components of snow are known to be absorptive in the near infrared do-
main [164, 230]. We remark that this domain includes the values commonly used in studies of
light transmittance through snow [24, 52, 68, 169]. In our experiments, we considered a spectral
resolution of 10 nm.

Recall from Chapter 7 that we performed a baseline comparison between measured data
provided by Dumont et al. [54] and simulated data whose parameter values are presented in Ta-
ble 7.1. We deemed the resulting virtual snow sample as the representative sample, a convention
that we also consider in this case study. Furthermore, we employed the same characterization
values for our transmittance experiments, varying only the independent variable under test.

For our experiments, we selected two characterization traits to investigate, namely grain
size and density, and varied the associated model parameter values. The transmittance curves
were computed throughout the selected spectral domain for various thicknesses. For grain
size, we selected two average sizes, 100 and 500 µm, which we label small and medium-sized,
respectively. The selected grain size under test is the mean of a uniform distribution of grain
sizes, with a range of ±50 µm. The two density values employed in our experiments are 100
and 400 kgm−3, which we label as low and high, respectively. Varying these two parameters
yields four study samples. Our experiments were repeated four times for each sample using a
selection of sample thicknesses. This approach produced a profile of the light penetration depth
for each of the four samples.

E.3 Experimental Findings

In this section, we present the results of our experiments and discuss their implications for
remote sensing in the context of weak-layer formation and the prediction of slab avalanches.
All transmittance graphs presented in this section were plotted using the same scale. This was
done to illustrate the relative impact each independent variable has on the amount of solar
energy transmitted through the snowpack.

Our first experiment investigates the effect of grain size on light penetration depth. We
computed the transmittance values using two different grain sizes. All other parameter values
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Figure E.2: Comparison of simulated transmittance curves computed for two different snow
grain sizes for various sample depths (thicknesses). The curves depicted in (a) were computed
using an average grain size of 100 µm, whereas the curves depicted in (b) were computed with
an average grain size of 500 µm.

were kept the same as the representative sample. The data provided in the literature [194] sug-
gest that weak layers contain grains that are 2 mm in size. However, these data were recorded
after snow failure. For this investigation, we chose to study small and medium-sized grains,
which have not completed the morphological processes induced by solar radiation penetrating
the snowpack.

Figure E.2(a) presents graphs of light transmission through the snowpack with small grains
(mean size 100 µm), whereas Figure E.2(b) presents similar graphs that were generated using
medium-sized snow grains (mean size 500 µm). Observe that for small grain sizes, less than 3%
of solar radiation (in the 400 to ∼ 800 nm range) is transmitted below 2.5 cm depth. However,
for medium grain sizes over 10% of this radiation is transmitted to a depth of 2.5 cm, and
nearly 5% is transmitted to a depth of 7.5 cm. This indicates that transmittance is directly
proportional to grain size, which is consistent with observations reported in the literature for
granular materials [5, 40, 208]. Thus, it provides evidence that sufficiently large snow grains
will promote the formation of near-surface weak layers, which may lead to the precipitation of
avalanches. Indeed, as stated above, large grain sizes have been observed in the residual weak
layer after a failure event [194].

Our second in silico experiment investigates the effect of density on light penetration depth.
We computed the transmittance values for the representative sample using two different densi-
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Figure E.3: Comparison of simulated transmittance curves computed for two different snow
densities for various sample depths (thicknesses). The curves depicted in (a) were computed
using a density of 100 kgm−3, whereas the curves depicted in (b) were computed with a density
of 400 kgm−3.

ties. All other parameter values were kept constant with those of the representative sample. The
low density (100 kgm−3) graphs are presented in Figure E.3(a) and the high density (400 kgm−3)
graphs are presented in Figure E.3(b). The low density graphs show a greater transmittance,
which is consistent with reports found in the literature [159, 238]. (See also Section 7.2.2.)

The curves in Figure E.3(a) indicate that a significant fraction of solar radiation penetrates
low density snowpacks. At a depth of 2.5 cm, approximately a quarter of the visible light is
permeated. The quantity lessens in the infrared spectral domain, where absorption is more
significant. However, a non-trivial amount of transmittance is still verified in the near-infrared
domain, especially in the neighbourhood of 1100 nm. Furthermore, less than 15% of solar
radiation in the visible domain is transmitted below a depth of 2.5 cm. Finally, approximately
7.5% of solar radiation in the visible domain is transmitted below 10 cm.

The transmittance curves in Figure E.3(b) depict the fraction of solar radiation that pene-
trates through high density snow for various depths. With high density snow, less than 10%
of the incident light penetrated below a 2.5 cm depth. At a 10 cm depth, less than 2.5% of the
light is transmitted. These findings are consistent with radiation penetration theory predicting
snow crystal growth [42], whereby faceted crystal growth is computed to be greatest below the
surface at depths less than 15 cm.

Our final experiment addresses the combination of the two independent variables already
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examined in order to obtain insights into light penetration through four distinct study samples.
Except for density and grain size, all other parameter values are kept consistent with the rep-
resentative sample. The results are presented in Figure E.4. More specifically, the samples used
to generate the graphs in the top row were computed using small grains, and the samples used
to generate the graphs in the bottom row were computed using medium-sized grains. The sam-
ples on the left side were computed using low density snowpacks, and the samples on the right
hand side were computed using high density snowpacks. It is interesting to observe that less
than 2% of the visible radiation was transmitted below 2.5 cm for the small grain, high density
sample (Figure E.4(b)). In contrast, a significant fraction of visible and near infrared radiation
was transmitted for the medium-sized grains with low density (Figure E.4(c)).

It is also interesting to make a direct comparison between Figures E.4(a) and (d). Ob-
serve that the transmittance values are approximately on the same order of magnitude. In
Figure E.4(a), the transmittance of the solar radiation is affected by the low density of the snow-
pack, whereas in Figure E.4(d), the increase in grain size contributes to the quantity of light that
is transmitted into the snowpack. A little more than 5% of the visible solar radiation is trans-
mitted to a depth of 2.5 cm as presented in Figure E.4(a), and a little less than 10% of the visible
solar radiation penetrates to the same depth as presented in Figure E.4(d). This indicates that
both density and grain size are factors that affect the morphological processes that govern the
formation of weak layers.

Given the relationship between the penetration of light into snow and the studied grain
properties, we conclude that physically based estimations for both these snowpack properties
would assist in the process of avalanche prediction. In particular, low density snowpacks with
medium-sized crystals are susceptible to light penetration to a depth that is sufficient to fos-
ter the morphological processes that produce weak layers consisting of near-surface faceted
crystals. Improved monitoring of snowpacks exhibiting these traits may eventually lead to im-
proved prediction of snow slab failure events.

E.4 Summary and Perspectives

Avalanches are natural events incurring significant costs in the form of transportation delays
and property damage, while also posing risks to human life [100, 166, 203, 222]. We remark that
dry slab avalanches are the most hazardous type of these events since they are more difficult
to predict. The process of dry slab avalanche formation begins with light impingement on the
surface of the snow and the induction of thermal and convective flows below the surface. These
morphological processes may produce near-surface faceted crystals of which weak layers are
formed. Once buried beneath a cohesive layer, these near-surface faceted crystals form the
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Figure E.4: Comparison of simulated transmittance curves computed for four different snow
samples for various sample depths (thicknesses). The curves depicted in the top row were
generated using small grains (100 µm), whereas the curves depicted in the bottom row were
generated using medium-sized grains (500 µm). The curves depicted on the left were computed
using a low snow density (100 kgm−3), whereas the curves depicted on the right were com-
puted using a high snow density (400 kgm−3).
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weak layer associated with slab failure. Although extensive studies have been conducted to
investigate the cause of these failures, works addressing light transmission through snowpack
are still scarce in the literature. This may be due to the challenging task of accounting for the
morphological features at small scales. To address this concern, we performed experiments
using an in silico investigation approach that is supported by actual measured data and allows
for the configuration of the morphological features for various snow samples.

Our findings indicate that the transmittance of a snowpack is proportional to the size of
its grains and inversely proportional to its density. Our calculations are also consistent with
analytic approaches describing snow crystal growth [42]. More specifically, they demonstrate
that particular combinations of grain size and density allow for light to penetrate to the depth
required to facilitate near-surface faceted crystal growth in the snow pack. In addition, the
results of our investigation strengthen the knowledge required for the predictive assessment
of the factors leading to snow failure. In turn, such an assessment can be instrumental to the
implementation of solutions that reduce the costs incurred from these hazardous events.

Our investigation focused on the effect that grain size and density have on light transmission
through snowpacks in the formation of weak layers consisting of near-surface faceted crystals.
In the future, we intend to expand upon this effort by increasing the quantity of samples that
are examined for each trait, thus increasing the dimensionality of each independent variable.
This will enable us to examine the relationship (e.g., linear or quadratic) between the parameter
values and their effect on transmittance. This may also add to the understanding of the effect
of snow morphology on light penetration through snowpacks. For example, as morphological
changes are induced by the impinging light, what is the effect on light penetration throughout
the depth of the snowpack, and how is the process of weak layer formation bounded? We
also note that other snow grain parameters may have an effect on light transmission through
the material. We intend to incorporate other such parameters into our subsequent studies. In
particular, we plan to investigate how snow grain facetness may also affect the transmission
of light. We note that parameters such as facetness can be effectively studied using a first-
principles approach such as the one employed in this work.
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Appendix F

Case Study: The Effect of Grain
Facetness on Directional Reflectance

Due to its reflective properties, snow plays a key part in the regulation of Earth’s climate [22]. It
is also relevant for agriculture, providing source water for irrigation purposes at mid-latitudes
[21]. Quantifying this water resource is a challenge since significant volumes are deposited in
remote regions that are often difficult or time consuming to access. Consequently, remote ob-
servations are often required in order to assess the properties of snow deposits with regularity.

Data acquisition by remote systems requires that the geometry of the observation be taken
into account. This is due to the fact that the directional component of reflectance, i.e., the
BRDF, of snow is not directionally uniform. In addition to the angle of illumination and the
angle of observation, other factors may affect the BRDF response of a material. For example,
the wavelength of the incident light. Material characteristics also play an important role [30].
Since they vary with time [42] and with environmental factors associated with the snowfall [60],
the BRDF values of fallen snow on the ground must take these variations into account. In order
to properly assess the characteristics of the snowpack via remote observations, it is important
to understand how BRDF responses are affected by these variations. For example, the grain
size [54, 127, 231, 232] and facetness [54] of snow are known to have an effect on the directional
responses.

To date, a number of studies have been conducted, whereby the bidirectional reflectance of
snow has been measured [2, 54, 95, 126, 127, 163, 231]. Each study contributed a noteworthy
dataset to the literature. Whereas some of these datasets do include measurements of multiple
samples that exhibit varying grain characteristics [54, 127, 163], many datasets present mea-
surements for just a single sample. As a consequence, it is difficult to isolate the effect that
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varying the values of a particular snow grain characteristic imparts on the BRDF.
The case study described in this appendix aims to address these limitations and to add to the

current knowledge about directional light reflectance from snowpacks. Accordingly, using the
SPLITSnow model (Chapter 4), we carried out controlled experiments using measured spectral
data references and snow characterization parameter values that are consistent with sample
characterizations provided in the literature. Our findings expand upon the trends previously
observed to exist between snow grain facetness and bidirectional reflectance. They also pro-
vide an original assessment of the effect of facetness on bidirectional reflectance, which had
previously only been reported anecdotally in the literature.

Using this in silico approach, we investigated the bidirectional reflectance of a snow sam-
ple considering two markedly distinct degrees of facetness (Section F.1). The remainder of the
characterization parameter values are provided in Table 7.1. We remark that snow grains with
a large number of facets are commonly referred to as faceted crystals [60]. In this study, we use
the terms grain and crystal interchangeably. In addition to varying the facetness, the sample
was also irradiated using two different sources of illumination. The first illumination source
(600 nm) operates in the visible domain, in which snow is known to be highly reflective [228].
The second illumination source (1800 nm) operates in the infrared domain in which light inter-
acting with a snowpack undergoes a significant amount of absorption, while still exhibiting a
complex pattern of bidirectional reflectance.

F.1 In Silico Experimental Setup

Recall form Chapter 7 that we performed a baseline spectrometric comparison between mea-
sured data provided in the literature [54] and simulated data. The two corresponding reflectance
curves are presented in Figure 7.1 and the simulation parameters are presented in Table 7.1. We
deemed this virtual snow sample the representative sample, and we continue to refer to it as
such in this case study.

The in silico experiments conducted for this case study consisted of the computation of the
BRDF of the virtual snow sample using two distinct values for facetness, namely 0.1 and 0.9. The
remainder of the parameter values were kept the same as those that were used to characterize
the representative sample. Bidirectional reflectance experiments were performed for each value
of facetness to obtain the modelled readings.

As mentioned above, our experiments examine the effect of facetness on the BRDF. Faceted
crystals are identified by sharp edges and corners. This is in contrast to grains that exhibit
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rounding at the edges and corners. Recall that, microfacets [44, 213] are employed in the for-
mulation of the SPLITSnow model to account for faceted grains, and that facetness is a unitless
parameter ranging from zero to one, where zero indicates a perfectly smooth grain. In practice,
the facetness is specified as a distribution of values to be selected from stochastically.

We performed our experiments using two separate wavelengths of light. More specifically,
we selected 600 nm for our first set of experiments since snow is highly reflective at this visible
wavelength. The second wavelength that we chose for experimentation was 1800 nm. This
near infrared wavelength is much less reflective than 600 nm. It was selected since it exhibits
an appreciable amount of reflectance, and it is known to have reflectance features that differ
widely in their directional component [95].

F.2 Experimental Findings

In this section, we initially present the results of our experiments that make use of a virtual
600 nm light source to irradiate the virtual snow sample for both degrees of facetness. We then
show the results of our experiments in which the sample is irradiated using an 1800 nm light
source. Finally, we compare the outcomes of both experiments and discuss their implications
for remote sensing applications.

Throughout this section, the parameter values for the sample were all kept the same as those
used for the representative sample provided in Table 7.1. Only the independent variable under
test was adjusted to suit the experimental conditions.

The plots in Figure F.1 present the results of our experiments using a 600 nm light source.
Figure F.1(a) is a 3D plot of the directional response for an illumination source impinging upon
the material at an angle of 60◦ away from the zenith. The surface plot represents the mag-
nitude of the directional reflectance in the upper hemisphere over the sample. The sample in
Figure F.1(a) has an average facetness of 0.1. Similarly, Figure F.1(b) represents the same sam-
ple and illumination source. However, in Figure F.1(b), the mean facetness has been set to 0.9.
Figure F.1(c) presents slices of the 3D plots that have been taken through the principal plane,
which is the plane that contains both the normal to the surface and the direction of incidence.

We remark that snow is highly reflective at 600 nm (see Figure 7.1). Yet even at this wave-
length, the variation between the unfaceted and faceted responses is noticeable. The variation
is not extensive, which is consistent with observations recorded in field studies [95]. Neverthe-
less, a forward-scattering peak can be observed for the unfaceted crystals, whereas the peak is
reduced for faceted crystals. Although there have been observations reported in the literature
whereby facets have been shown to affect bidirectional reflectance [54, 163], specific details of
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Figure F.1: BRDF plots computed for the representative sample considering a wavelength of
600 nm and two different quantities of facetness. The angle of incidence was set to 60◦. A
facetness of 0.1 was employed to produce (a) whereas (b) was computed using a facetness of
0.9. The solid black line in (a) and (b) indicates the direction of incidence. Slices (through the
principal plane) of these two 3D plots are presented in (c). The red solid curve is a slice through
(a) and the green dashed curve is a slice through (b). In (c), a black dotted line indicates the
direction of incidence.

this effect are scarce. It is worth noting that, in field studies, it may be difficult to isolate the
effect of facetness from the effect of grain size. This difficulty can be attributed to methodolog-
ical constraints hindering the variation of only a single characterization trait of the measured
samples.

The results of our second experiment are presented in Figure F.2. Similar to Figure F.1,
Figure F.2(a) presents BRDF values for unfaceted crystals (mean facetness is 0.1), Figure F.2(b)
presents BRDF values for highly faceted crystals (mean facetness is 0.9) and Figure F.2(c) presents
a slice through the principal plane of the two 3D plots. Our results indicate a markedly different
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Figure F.2: BRDF plots computed for the representative sample considering a wavelength of
1800 nm and two different quantities of facetness. The angle of incidence was set to 60◦. A
facetness of 0.1 was employed to produce (a) whereas (b) was computed using a facetness of
0.9. The solid black line in (a) and (b) indicates the direction of incidence. Slices (through the
principal plane) of these two 3D plots are presented in (c). The red solid curve is a slice through
(a) and the green dashed curve is a slice through (b). In (c), a black dotted line indicates the
direction of incidence.

response between unfaceted and faceted crystals. The sample, when characterized by smooth
crystals, demonstrated a greater forward-scattering peak, whereas the sample, when consisting
of faceted crystals, exhibited both forward- and backward-scattering peaks. These observations
are consistent with the measured values presented by Painter and Dozier [163] where they ob-
serve a local backward-scattering peak in fine, faceted snow crystals. In addition to this, it has
been observed by Aoki et al. [2] that bidirectional reflectance is known to have more directional
variation in the near infrared. This phenomenon is also reproduced by our experiments, and it
can be observed by comparing Figures F.1 and F.2.
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Figure F.3: BRDF plots (through the principal plane) computed for the representative sample
considering two different wavelengths. The angle of incidence and facetness were set to 60◦
and 0.9, respectively. The two wavelengths employed were 600 nm (red solid line) and 1800 nm
(green dashed line) to allow for a comparison to be made regarding relative brightness. A black
dotted line indicates the direction of incidence.

As shown in Figure 7.1, spectral reflectance at 600 nm is significantly greater than at 1800 nm.
To further illustrate this aspect, Figure F.3 presents a comparison of the directional profiles for
faceted crystals (mean facetness is 0.9) for both 600 nm and 1800 nm depicted at the same scale.
The red solid curve was reproduced using the same data that was used to obtain the green
dashed curve in Figure F.1(c), and the green dashed curve was reproduced using the same data
that was used to obtain the green dashed curve in Figure F.2(c). We remark that the same sam-
ple was used to produce the curves in Figures F.1 and F.2, and that only the wavelength of the
illumination source was altered.

It has been demonstrated [2, 53, 95] that there is an increase in the variation of the direc-
tional reflectance when snow is illuminated with a wavelength of light that exhibits a smaller
amount of total reflectance, i.e., when a wavelength of light that is known exhibit a high to-
tal amount of reflective, the directional variation is reduced. This aspect has been attributed
to an increase of the effect of single scattering [163]. The association between grain size and
directional reflectance has also received attention in the literature [54, 95, 127, 163, 231, 232].
Although it has often been observed that an increase in grain size leads to an increase in the
variation of directional reflectance [127, 163], it has also been noted that this is wavelength
dependent [231].

The morphological changes observed throughout the metamorphic process of snow affect
more than a single characterization trait, such as grain size, at a time [41]. Other character-
istics, such as facetness, are also affected by morphological changes. This imposes limitations
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on studies conducted in the field and complicates the analysis of their results [54]. By em-
ploying a first-principles in silico framework, we have been able to keep grain size constant
and examine the effect of facetness on the BRDF of snow. Our experiments indicate that, at
1800 nm, snow crystals with low facetness exhibit marked variation throughout their direc-
tional response curves. In particular, directional reflectance in the forward direction is greater.
Although less pronounced, this phenomenon has also been reproduced in our experiments con-
sidering an incident light at 600 nm.

In the case of natural snowpacks that have been precipitated as crystals, it is understood
that morphological processes [41] alter the crystals so that they become less faceted over the
course of several days. The same morphological processes also often contribute to the growth
of the crystals, making the average crystal size increase with time. Due to the aforementioned
limitations of field studies, it may be challenging to perform an in situ quantification of the
effect of individual characterization value changes. In particular, as noted above, an increase
in directional variation is often attributed to an increase in grain size. Our in silico experimen-
tal results indicate that grain size is not the only characteristic that affects the bidirectional
reflectance.

Efforts have been made to estimate the grain size of snow using observations made in the
near infrared domain [156, 157]. As smaller new-fallen faceted crystals morphologically change
into larger less faceted crystals over time, the effect on the BRDF in the infrared domain is non-
trivial, and it is affected by changes due to both characterization traits. The increased size of the
crystals tends to increase the variations on directional reflectance [2, 53, 95]. However, our find-
ings indicate that the decrease in facetness also augments the BRDF by increasing the amount
of forward scattering. Therefore, attempts to assess snow grain size via remote observations
could be improved by accounting for the faceted nature of the snow grains into these research
initiatives.

F.3 Summary and Perspectives

In this case study, we used SPLITSnow to conduct in silico experiments involving the bidirec-
tional reflectance of snow. Given the abundance of snow and its relevance to climate and fresh
water reserves, regular assessments of this natural resource are important to human welfare.
Unfortunately, much of this natural material is precipitated at difficult or costly to access re-
gions, thus requiring the use of remote observations for monitoring purposes. Viewed in this
context, a comprehensive understanding about this material’s scattering properties (quantified
in terms of its BRDF) is essential for assessing snowpack properties on the ground.
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Besides the material’s macroscopic features and optical properties, their intrinsic character-
istics, such as grain size, can also affect their directional reflectance. The effect of some of these
characteristics has been examined in field and laboratory studies. Our investigation has shown
that grain facetness is also particularly relevant for studies involving snow BRDF. Accordingly,
it should be accounted for in related research initiatives in this area so that more insightful
knowledge and reliable data about this complex natural material can be obtained.

In the future, we intend to extend this investigation by examining the BRDF associated with
more wavelengths of interest. In particular, the 1030 nm band [157] as well as the 860 nm and
1640 nm bands [92] have been employed in snow grain size retrieval estimates. Examining a
broader portion of the spectrum will aid in such studies. We also intend to investigate the effect
that other snow sample characterization parameters have on the BRDF of snow. For example,
snow grain shape (spherical vs. elongated), water content and density may all have an impact
on the spatial distribution of light propagated by snow. For some characteristics, rather than
altering the qualitative form of the BRDF, a scaling of the response values may be detected. For
such cases, an in silico investigation would ideally suit the task of determining the relationship
(e.g., linear, quadratic, etc.) between the characterization trait and the effect on the response.
Lastly, the transmission of radiation through thin layers of snow has an effect on the radiation
budget of frozen lakes [170]. It might also be interesting to account for the thickness of the
snowpack and its effect on the BTDF for such environments.

194



Index

absorption, 2, 11, 12, 27, 29, 35, 37–39, 43,
44, 48, 49, 51–53, 89, 93, 96–98,
104–106, 108, 161–163, 181, 183,
188

angle of incidence, 45, 68, 70, 71, 79, 99,
101, 134, 161, 162, 190–192

Angstrom exponent, xxxi, 49, 93, 95, 96
attenuation, 2, 49, 52, 61
avalanche, 6, 25, 177–186

Bernoulli trial, 39, 42, 44, 169
black carbon, see impurities
BRDF, 15, 16, 45, 46, 65, 67, 88, 101–106,

133, 134, 187–194
brown carbon, see impurities
BSDF, 15, 39
BSSDF, 15, 57, 65
BTDF, 15, 65

characterization, see sample
characterization

CIELAB, xxxi, xxxiii, xxxvi, 72, 73, 116, 117
CIEXYZ, 72, 73

D55 illuminant, 125
D65 illuminant, 72, 73, 123, 125
density, 34, 35, 46, 68–70, 81, 83, 85, 87, 128,

173, 174
depth, see thickness

detour effect, 53, 69
diffraction, 42

electromagnetic radiation, xxxvi, 1, 3, 6–9,
12, 14, 16, 27, 28, 42, 66, 71, 89, 92,
100, 161, 178–184, 194

extinction coefficient, xxxii, 13, 29, 39, 40,
43, 44, 52, 68, 69, 105

facetness, 34, 70, 81, 83, 85, 87, 128, 134,
180, 187, 189, 192, 193

fidelity, 2, 6, 28, 30, 51, 54, 63, 75, 79, 102,
109, 115, 116, 118–120, 133

first-principles, 3, 4, 31, 36, 131, 193

geometric optics, 4, 6, 12, 13, 15, 28, 31,
36–40, 42–45, 57, 65, 66, 101, 110,
162, 193

goniometric, 4, 14, 30, 69, 70, 75, 77, 79, 88,
101–106, 134

goniophotometer, 15, 65
grain shape, see sphericity
grain size, 4, 28, 34, 46, 67, 69, 70, 79, 81, 83,

85, 87, 128, 173, 174, 189, 192, 193

hardness, 46
Helmholtz reciprocity, 18, 22
heterogeneity, 4, 31, 47, 70, 92–94, 134

195



impurities, 1, 2, 4, 30, 47–49, 69, 70, 80,
84–87, 93, 95, 96, 124, 125, 178

index of refraction, 2, 12–14, 29, 40, 42, 44,
51, 52, 64, 68, 75, 96, 97, 105,
161–163

Lambertian reflection, 14, 17, 18, 66, 103
light, see electromagnetic radiation

model parameter
angle of incidence, 55, 57–61, 67, 68, 74,

81, 83, 85, 87–91, 97–99, 101–107,
109–111, 113, 114, 119, 122

black carbon, 48, 49, 70, 84, 85, 87, 93,
95

brown carbon, 48, 49, 70, 93, 95, 96
density, 34, 37, 38, 42, 55, 57–61, 65, 67,

70, 74, 81, 83, 85, 87, 90, 91, 98–101,
109–111, 113, 114, 119, 121–123,
125, 127, 128, 165–167, 173, 174,
178, 181–186, 194

facetness, 34, 42, 55, 57–61, 67, 70, 74,
80, 81, 83, 85, 87, 89, 90, 105, 106,
109–113, 119, 121–123, 125, 127,
128, 178, 186, 188–192

grain size, 34, 40, 55, 57–61, 67, 70, 74,
81, 83, 85, 87, 89, 97, 98, 100, 101,
104–106, 109–113, 119, 121–123,
125–128, 166, 173, 174, 178,
181–186, 194

multi-layered, 45, 46, 70, 90–92
sphericity, 34, 40, 41, 81, 83, 85, 87, 167,

194
temperature, 34, 81, 83, 85, 87, 165, 173,

174
thickness, 34, 39, 55, 57–61, 67, 74, 81,

83, 85, 87, 90–92, 96–99, 102, 103,
107, 109, 111, 113, 115, 116, 119,

122, 123, 125, 126, 173, 174,
181–183, 185

water content, 34, 37, 39, 43, 44, 67, 81,
83, 85, 87, 96, 97, 99, 105, 134, 169,
194

Monte Carlo, 4, 19, 36, 40
multi-layered, 4, 45, 46, 90–92, 134

nadir, 45, 71, 101, 103

path tracing algorithm, 20–22, 56–59, 61,
125

perceptual difference, 72, 73, 75, 115–120
phase function, 12, 21, 27, 28
phenomena, directional

greater directional variation with
reduced total reflectance, 102, 103

nadir darkening, 101, 103
reduced reflectance at zenith, 101–103

polar angle, 16, 101–104, 106
polarization, 27, 161
pore space, xxxv, 1, 4, 28, 34, 36, 37, 39, 43,

44, 47, 48, 79, 169, 170
predictability, 1, 2, 4, 6, 12, 31, 32, 51, 54,

63–67, 70, 79, 88, 89, 95, 96, 102,
105, 108, 129, 134, 135, 161

principal component analysis, 54–59, 61,
72, 109, 115–120, 123, 125

principal plane, 88, 101–104, 106, 189–192
profile, 45, 46, 92, 173, 174

radiance, 10, 15–17
radiation, see electromagnetic radiation
rainbow, 11, 12, 51, 163
ray

as light, 4, 8, 12, 28, 35, 52, 53, 188
for ray tracing, 21, 22, 27, 28, 36–42,

56–59, 61, 65, 125, 166, 167
optics, see geometric optics

196



ray tracing algorithm, 19–22, 27, 28, 56, 58,
59, 61, 125

reflectance factor, xxxiv, 17, 18, 69, 104
reflection, 1–3, 6, 11, 14, 17, 21, 27–29, 31,

34, 35, 39, 42, 43, 45, 47, 52, 53, 58,
59, 65–71, 79–85, 87–96, 101–106,
124, 125, 161, 173

refraction, 11, 12, 21, 35, 39, 42, 52, 53, 69,
161–163

rendering, 1, 2, 4–7, 19–21, 23–26, 30, 51,
52, 54, 56–61, 63, 73, 74, 111, 113,
115, 116, 123–126, 128, 133, 134

representative sample, 68, 81, 181–183,
188–192

response, xxxiii, 1–4, 8, 9, 14, 18, 31, 32, 59,
61, 64, 65, 68, 72, 73, 79, 116, 135,
187–190, 193, 194

sample characterization, 2, 4, 31, 32, 34, 35,
45, 55, 64, 67, 68, 79, 109, 135, 181,
187, 192, 193

sastrugi, 5, 68, 134
scattering, 7, 10–12, 15, 25, 27–29, 40, 52,

53, 70, 88, 97, 98, 102, 103, 105, 106,
178, 189, 190, 192, 193

shape, see sphericity

singular-value decomposition, 55
sintering, 180
spatial distribution, 1, 4, 14, 32, 57, 68, 70,

75, 79, 88, 90, 101–106, 194
spectral distribution, 1, 3, 4, 14, 18, 30, 32,

46, 57, 63, 66, 67, 71, 72, 74, 75,
79–81, 84, 85, 89–99, 115–125, 134,
181, 188

spectrophotometer, 178
sphericity, 4, 34, 46, 81, 83, 85, 87

temperature, 1, 23, 34, 35, 46, 71, 81, 83, 85,
87, 173, 174, 178

thickness, 4, 27, 29, 34, 35, 45, 46, 52, 53,
68–70, 73, 81, 83, 85, 87, 90–92, 99,
125, 126, 173, 174

transmission, 1, 2, 11–13, 15, 23, 26, 31, 35,
39, 45, 47, 51–61, 66–70, 72–75, 79,
86, 88, 95–101, 108–126, 128, 134,
135, 161, 162, 178, 181–186, 194

transmittance database, 54, 55, 60, 72,
109–120, 123, 134

water content, 27, 29, 34, 35, 46, 79, 81, 83,
85, 87

zenith, 101–103, 189

197


	List of Figures
	List of Tables
	Abbreviations
	List of Symbols
	Introduction
	Overview of Contributions
	Document Organization

	Physical Background
	Electromagnetic Radiation and Materials
	The Wave-Particle Duality of Light
	Radiometric Terms
	The Scattering of Light by Materials
	Geometric Optics

	The Measurement of Appearance
	Modes of Illumination and Directional Measurement

	Probability Terminology and Monte Carlo Concepts
	Image Synthesis Background
	Local Illumination Models
	Global Illumination and Path Tracing


	Related Work
	Computer Graphics
	Snow Accumulation Models
	Animation
	Snow Appearance

	Snow Reflectance *model Aimed at *insilicoIn Silico Studies
	Single Scattering
	Multiple Scattering


	Modelling Light and Snow Interactions
	Data Considerations
	Snow Characterization
	Model Formulation
	Overview
	Grain Generation
	Light and Grain Interactions
	Light Propagation Through the Interstitial Medium
	A Note on Water Saturation

	Multi-layered Samples
	Heterogeneous Samples
	Impurities

	Snow Appearance Visualization
	Spectral Transmittance Database
	Principal Component Analysis
	Visualization Process

	Evaluation Methodology
	Datasets and Data Flow
	Virtual Measurement Procedures
	Data Considerations for Radiometric Comparisons
	Analysis of Remotely Acquired Data
	Reconstructed Data Verification
	Spectral Resolution for Rendering
	Reproducibility and Dissemination

	Spectrometric and Goniometric Results
	Quantitative Spectrometric Comparisons
	Qualitative Spectrometric Comparisons
	Reflectance Trends
	Transmittance Trends

	*goniometric Assessments
	Comparison with Remotely Acquired Data

	Data Analysis Results
	Spectral Transmittance Database
	Transmittance Database Compression
	Visual Fidelity
	Snow Characterization Variability

	Visual Results
	Specific Appearance Changes
	Comprehensive Appearance Changes

	Conclusion
	Contributions
	Future Work
	Model Extensions
	Rendering Enhancements
	Interdisciplinary Investigations


	References
	APPENDICES
	Optical Concepts and Terminology
	Fresnel Equations
	Snell's Law

	Average Particle Distance Computation
	Particle Distance Computation for Homogeneous Samples
	Particle Distance for Heterogeneous Samples

	Parameter Input Conversion Methods
	Water Fraction to Water Saturation Conversion
	``Wet'' to ``Dry'' Snow Density Conversion

	Virtual Snow Parameter Value Selection
	Case Study: Avalanche Slab Failure
	Avalanche Formation
	*insilicoIn Silico Experimental Setup
	Experimental Findings
	Summary and Perspectives

	Case Study: Grain Facetness and Directional Reflectance
	*insilicoIn Silico Experimental Setup
	Experimental Findings
	Summary and Perspectives

	Index

