
Adding a new model to NPSGD

Thomas Dimson
Natural Phenomena Simulation Group (NPSG)
David R. Cheriton School of Computer Science

University of Waterloo, Canada

January 30, 2011

Contents

1 Introduction 3

2 Quick Start 3

3 Models 3

4 Helper classes 4

4.1 StandaloneTask . 4

4.2 MatlabTask . 4

5 NPSGD Pipeline 4

6 Model Pipeline 5

7 Model Implementation 5

7.1 Defining a class . 5

7.2 Parameters . 6

7.2.1 Parameter Options . 6

7.2.2 Parameter Types . 6

7.2.3 Attachments . 7

7.2.4 Graphical Output . 7

7.2.5 LATEX Output . 8

1

7.2.6 Reading Parameter Values . 9

7.2.7 Helpers: StandaloneTask . 9

7.2.8 Helpers: MatlabTask . 10

A Complete Example of a Matlab Task 10

A.1 NPSGD Code . 10

A.2 Matlab Code . 11

B Complete Example of ABM-U 11

2

1 Introduction

NPSGD was designed to to make it easy to add new models. Within a NPSGD, a “model” is a
Python class that inherits from a specific base class. This class often is a wrapper for an existing
implementation of a model in another language such as C++ or Matlab. By editing these model
wrappers, NPSGD will create a create the web interface with the corresponding parameters. It is
up to the module to perform the work of running the model and giving meaningful output to the
user.

2 Quick Start

The Python model wrappers of NPSGD are located in the models/ subdirectory an extension of
.py. To quickly implement a model wrapper, simply copy example.py to a new filename called
my_model.py. Edit this file and assign the short_name class variable to my_model. Your model
will now be accessible to all of the NPSGD daemons. In particular, you will be able to access
my model via the npsgd web daemon at http://npsgdserver:8000/models/my_model.

Please note that you will have to make sure that the model is available on all servers running
NPSGD daemons (queue, web, and workers) for NPSGD to function correctly.

3 Models

In NPSGD, a “model” is actually a Python class that inherits, from the base class of ModelTask.
This gives the user the flexibility to be language-agnostic in terms of model implementation, with a
quick Python wrapper as a model runner.

All model wrappers (with a .py extension) are placed in the models/ subdirectory. Periodically,
the queue, web, and worker daemons will scan this directory for conforming (or newly times-
tamped) classes and load them into memory. From there, the model will be immediately accessible
from the web, and therefore from the worker and queue. By default, the scanner propagation time
is 120 seconds. If the wrapper file is ever removed, the model will continue to be served in memory
so that older requests can complete.

Model wrappers are loaded with an associated “version” - a MD5 hash of the file that was used
to declare the model wrapper. All requests in NPSGD are keyed by both the model name and this
version value. When a requests comes in from the web page, a hidden parameter is sent telling the
npsgd web what version of the model the user was looking at. This allows for you to update the
models on disk without destroying requests that are are already in memory (since they will execute
under the old version).

The model versioning also allows worker machines to have a subset of the models available to
the queue and web machines. When a worker polls the queue, it gives the queue a list of supported
model-version pairs. The queue will only return requests that were made with models available in
this list.

3

http://npsgdserver:8000/models/my_model

4 Helper classes

Rather than inheriting from ModelTask directly, NPSGD provides two helper classes that can greatly
speedup creation of models. These are StandaloneTask and MatlabTask.

4.1 StandaloneTask

Models inheriting from StandaloneTask are wrappers for standalone executables that communicate
using command line arguments (e.g., specifying the path to specific data input). When such a model
executes the pre-requisites are prepared in the working directory and a subprocess is spawned using
the executable and command line parameters.

4.2 MatlabTask

MatlabTask aids in connecting models that were programmed in Matlab. Essentially, this allows the
user to access web parameters directly in Matlab code, bypassing the need worry about technical
details such as spawning subprocesses to run the model.

5 NPSGD Pipeline

The purpose of NPSGD is to perform all the administrative work needed to deliver data to your
model implementation. It is useful to understand exactly the processes that occurs in order for this
to happen, though the model implementor will not have to touch this pipeline at all.

1. A model that is implemented in models/example.py is noticed and loaded by all NPSGD
daemons.

2. Online web user visits the web interface for the model, typically at http://npsgdserver:

8000/models/example. The user specifies all the parameters present in the model and clicks
submit.

3. Web daemon npsgd web submits the request to the queue.

4. Queue daemon, npsgd queue sends an email to the user with a confirmation code for the
request.

5. User receives email, clicks the confirmation code link which is typically http://npsgdserver:

8000/confirm_submission/code. The web daemon submits the confirmation code to the
queue daemon at this time.

6. Queue daemon waits for a worker to poll. When a worker polls with this model available,
queue will hand off the request.

7. Worker spawns the model class with the parameters that were specified in the web interface.
Model proceeds with model pipeline documented in Section 6.

8. Model pipeline completes, sends an e-mail to the user and then tells the queue that everything
has completed successfully.

4

http://npsgdserver:8000/models/example
http://npsgdserver:8000/models/example
http://npsgdserver:8000/confirm_submission/code
http://npsgdserver:8000/confirm_submission/code

6 Model Pipeline

The model pipeline is the section that a model implementor will actually have to create in the model.
Typically, these follow a strict order that is specified in ModelTask class under the method run:

1. A working directory is created for the model (usually /var/tmp/npsgd/unique_id.

2. Execution is setup in the prepareExecution method. This is generally done by converting
parameters into a form (e.g., a file in the working directory) that the model can work with.

3. The model is run under the runModel method. A typical model run includes calling the
subprocess with specified parameters and waiting for the result.

4. Graphs are prepared under the prepareGraphs method using the data that was outputted
from runModel.

5. PDF document is created in generatePDF, through getAttachments using PDFLatex.

6. E-mail is sent using sendResultsEmail.

If any of these stages fail, a message will be communicated back to the queue telling it that it
failed to execute the task. The queue will recycle the request a fixed number of times (in case the
error is transient) and will send an error e-mail eventually if it continues to fail.

Note that the pipeline can be greatly simplified by using the helper classes outlined in Section 4.

7 Model Implementation

This section is a basic guide about specifying a model to run.

7.1 Defining a class

A model must inherit from ModelTask, or one of the specialized helper classes specified in Section
4. The model must be saved under models/my_model.py. For example, a skeleton model could
take the form of

from npsgd.model_task import ModelTask

from npsgd.model_parameters import *

class MyModel(ModelTask):

short_name = "my_model"

full_name = "My Model"

subtitle = "Super example model"

5

7.2 Parameters

All model parameters are specified in the class structure itself, in a list with the name parameters.
As an example to start, we could specify an integer representing the number of samples to take into
account during a simulation, with a default of 1000:

...

class MyModel(ModelTask):

...

parameters = [

...

IntegerParameter(’nSamples ’, description="Number of

samples to specify",

default =1000)

...

]

7.2.1 Parameter Options

All parameters support a variety of different options in order to modify its behaviour. The first
value passed into the parameter is always the name, which is used as a reference through NPSGD.
The rest of the options are specified using keyword arguments. Each parameter type outlined in
Section 7.2.2 has a superset of these options:

Option Description
name Unique identifier used to reference the parameter through NPSGD.

These generally should not have spaces, and by convention are
camel cased.

description As it says, used to describe the parameter. The string specified
here will appear in a number of places, including the output LATEX
document, and the HTML page.

default Used to specify the default value of a parameter.
hidden Boolean used to toggle whether the parameter is hidden or not.

Currently, this only affects the output HTML. Hidden parameters
will simply be passed along with their default value. This is useful
for subclassing models

helpText Used to give “helpful hints” when a user is specifying the model.
This currently appears as balloon text on the HTML output page.

7.2.2 Parameter Types

Currently, NPSGD supports the following parameter types:

• StringParameter: Basic string input. The only extra option is units, which represents the
units of input.

• FloatParameter: Basic float input. Float parameters can be used to specify a specific range
of inputs by specifying the rangeStart, rangeEnd and step inputs. If both rangeStart and

6

rangeEnd are specified, the float parameter will function as a slider. If only rangeStart or
rangeEnd are specified, the input will be clamped to values accordingly. Additionally, floats
take a units parameter that can be used to specify the units of the float (e.g., nm, cm)

• IntegerParameter: Basic integer input. Integers have exactly the same options as
FloatParameter, but will be verified to ensure the number is an integer.

• RangeParameter: Range parameters are used for specifying a range of floating point inputs
(e.g., 400-2500nm). Options for RangeParameter match FloatParameter, but must have all
of rangeEnd, rangeEnd and step specified. The output and default values of a range must be
specified as a pair of floats, e.g., default=(1,5), representing the range of choices.

• SelectParameter: Select parameters are used to clamp input to a specific set of options,
something like a combo box. Select parameters have an option called options, which is a list
of valid inputs that the select box can take (e.g., “Strong”, “Weak”).

• BooleanParameter: Boolean parameters are similar to the SelectParamater type, but now
are clamped to true/false. These parameters will display as text boxes in HTML and have no
additional options.

All parameter types are declared in npsgd/model_parameters.py. Custom parameter types
could be based off these examples and declared in any file that is accessible to the model.

7.2.3 Attachments

By default, NPSGD includes only the PDF created via LATEX, outlined in Section 7.2.5 as an
attachment. If your model creates more output (such as data files, graphs, pictures, etc.) then you
may want to add additional attachments. In NPSGD, this is performed by adding a class variable
by the name of attachments consisting of a list of all additional attachments within the working
directory to include. For example,

...

class MyModel(ModelTask):

...

attachments = [picture.jpg , data.txt]

...

The above code listing would include two e-mail attachments (picture.jpg and data.txt) along
with the usual results.pdf.

If you want more flexibility in specifying attachments, consider overriding the getAttachments

method on ModelTask.

7.2.4 Graphical Output

After an executable has run, usually a task will create graphs out of the output In NPSGD, this can
be accomplished by saving files in the working directory by overriding the prepareGraphs method in
a model. Python has an excellent library called matplotlib (http://matplotlib.sourceforge.
net/) which creates graphs that are on-par with Matlab’s using commands that are almost identical
to Matlab plot syntax. For example,

7

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/

...

import os

import matplotlib

matplotlib.use("Agg") #suppress graphical user interface

import matplotlib.pyplot as plt

...

class MyModel(ModelTask):

...

attachments = [plot.png]

...

def prepareGraphs(self):

x = [1,2,3,4,5]

y = [10,5,2,6,7]

plt.clf() #clear previous plot

plt.plot(x,y)

plt.xlabel("X")

plt.ylabel("Y")

plt.title("Demo Plot")

plt.savefig(os.path.join(self.workingDirectory , "plot.

png"))

...

Note that the prepareGraphs method is completely optional - if your model does not have
graphical output, or creates the output inside the executable then you may include the relevant files
using the attachment mechanism outlined in Section 7.2.3.

7.2.5 LATEX Output

Output for all models is generally routed through pdflatex. Each model will definitely want
to override the latexBody method. This method returns a string that is inserted into the LATEX
template available in templates/latex/result_template.tex. The resultant tex file is then run
through pdflatex in order to generate a file called result.pdf. This file, by default, is included in
every e-mail that is sent out.

ModelTask has a method for creating a LATEX table containing all the parameters that the user
has specified. By including self.latexParameterTable() somewhere in the LATEX output the
output PDF will contain a very nicely formatted parameter table.

A complete example:

...

class MyModel(ModelTask):

...

def latexBody(self):

return r"""

Hello there!

\section{Main Section}

8

This is the result of an example model run for NPSGD.

Your

parameters were:

%s

""" % self.latexParameterTable ()

It is highly recommended that you use Python docstrings (triple quoted strings) in order to
specify output, as well as using the r prefix to the string (raw string mode, so you do not have to
escape slashes).

7.2.6 Reading Parameter Values

When executing your script, preparing graphs and outputting LATEX it is often necessary to have
access to the parameters that the user has specified at the web interface. These are automatically
delivered to the script using the names that you specified in for your parameters. By accessing
self.parametername.value in any instance method, you will get access to the value that the user
specifies. This is best illustrated by example:

...

class MyModel(ModelTask):

...

parameters = [

...

IntegerParameter(’nSamples ’, description="Number of

samples to specify",

default =1000)

...

]

def prepareGraphs(self):

print self.nSamples.value #Will output the number of

samples the

#user specified

7.2.7 Helpers: StandaloneTask

Subclassing StandaloneTask automates the process of running a subprocess in order to execute a
model on the command line. This is the most technical part of the process.

StandaloneTask specifies a method of runModel that simply executes a command as a Python
subprocess, and stores the stderr/stdout of the subprocess in instance parameters self.stdout and
self.stderr. The subprocess is executed within the model’s working directory.

The model creator must specify one additional parameter, and one additional method for run-
ning. The class variable executable specifies the path to the executable we wish to run (typ-
ically the model executable, or something like java for a Java task). The instance method
executableParameters returns a list of parameters for the executable along with values. The

9

parameters are specified as a Python list. A developer might take the values specified in the param-
eter list for the model wrapper to pass in values to the underlying script. This is best shown via
example:

from npsgd.model_task import StandaloneTask

from npsgd.model_parameters import *

class LsModel(StandaloneTask):

...

executable = "ls"

...

def executableParameters(self):

return [

"-al",

"/var/tmp"

]

Such a model will execute ls -al /var/tmp in a subprocess and return the results in
self.stdout. Many more examples ship along with NPSGD.

7.2.8 Helpers: MatlabTask

Subclassing MatlabTask automates the process of spawning a Matlab subprocess, which can be a
tricky and time consuming process. It also delivers the parameter values directly into the Matlab
environment. The script will just “magically” have access to all the values of user input in variables
that match the names specified in the model class. For example, if you declare a parameter named
“myInt” and the user specifies a value of “5”, your Matlab script will execute in an environment
where the “myInt” variable is assigned 5.

NPSGD implements parameter delivery by creating a wrapper script on the fly that is fed into
Matlab. This Matlab script has all the assignment statements for the parameters passed in and
finishes with a call to the function that you specify, as described below.

A user of the MatlabTask helper need only specify one additional class parameter, namely
matlabScript which gives the location of the script Matlab should execute. A full example of
using MatlabTask is specified in Appendix A.

A Complete Example of a Matlab Task

A.1 NPSGD Code

from npsgd.matlab_task import MatlabTask

from npsgd.model_parameters import StringParameter , IntegerParameter

, RangeParameter , FloatParameter

class ExampleModel(MatlabTask):

short_name = ’example ’

10

full_name = ’Example Model ’

subtitle = ’A demo model ’

parameters = [

StringParameter(’test’, description="This a test string

"),

IntegerParameter(’graphEnd ’, description="Graph end point"),

RangeParameter(’ranger ’, description="Sample range

parameter" ,\

rangeStart =400, rangeEnd =700, step =1),

FloatParameter(’floater ’, description="Sample Float

Parameter", rangeStart =10, rangeEnd =1000 , step =1)

]

matlabScript = ’/home/tdimson/public_html/npsg/npsgd/models/

example/example.m’

def latexBody(self):

return r"""

This is a test of including a figure.

\begin{figure}

\caption{A nice looking function}

\includegraphics[width =5in]{ test_figure}

\end{figure}

\newpage\appendix\section{Parameter List}

%s

""" % self.latexParameterTable ()

A.2 Matlab Code

x = rangerStart :1: rangerEnd;

y = x.^2;

plot(x,y)

title(’Plot of y = x^2’)

print -dpng test_figure

B Complete Example of ABM-U

ABM-U is a more sophisticated example of a model task. An example of this code running is
available at http://www.npsg.uwaterloo.ca/models/ABMU.php.

Author: Thomas Dimson [tdimson@gmail.com]

Date: January 2011

For distribution details , see LICENSE

import os

import sys

11

http://www.npsg.uwaterloo.ca/models/ABMU.php

import csv

import json

import matplotlib

matplotlib.use("Agg")

import matplotlib.pyplot as plt

from npsgd.standalone_task import StandaloneTask

from npsgd.model_parameters import *

class ABMU(StandaloneTask):

short_name = ’abmu_c ’

full_name = ’ABM -U’

subtitle=’Algorithmic BDF Model Unifacial ’

parameters = [

IntegerParameter(’nSamples ’, description="Number of

samples",

rangeStart =1000 , rangeEnd =100000 , step=1, default

=10000) ,

RangeParameter(’wavelengths ’, description="Wavelength

Range",

rangeStart =400, rangeEnd =2500 , step=5, units="nm",

helpText="Modeled spectral curves will be

generated in steps of 5nm."),

FloatParameter(’angleOfIncidence ’, description="Incident

angle",

default=8, rangeStart =0, rangeEnd =90, step =0.1,

units="degrees"),

SelectParameter(’surfaceOfIncidence ’, description="

Surface of incidence",

options =["Adaxial", "Abaxial"], default="Adaxial",

helpText="The adaxial surface corresponds to the top

epidermal layer of the leaf , while the abaxial

surface corresponds to the bottom epidermal layer

."),

FloatParameter(’wholeLeafThickness ’, description="Leaf

thickness",

default =2.04e-4, units="m"),

FloatParameter(’mesophyllPercentage ’, description="

Mesophyll percentage",

default =80, units="%", rangeStart =0, rangeEnd =100,

step =0.1,

helpText="Percentage of the total leaf thickness

occupied by the mesophyll tissue."),

FloatParameter(’chlorophyllAConcentration ’, description=

"Chlorophyll A concentration",

default =0.002895146 , units="g/cm^3", rangeStart =0.0)

,

FloatParameter(’chlorophyllBConcentration ’, description=

"Chlorophyll B concentration",

12

default =0.00079866 , units="g/cm^3", rangeStart =0.0),

FloatParameter(’carotenoidConcentration ’, description="

Carotenoids concentration",

default =0.000658895 , units="g/cm^3", rangeStart =0.0)

,

FloatParameter(’proteinConcentration ’, description="

Protein concentration",

default =0.05308714 , units="g/cm^3", rangeStart =0.0),

FloatParameter(’celluloseConcentration ’, description="

Cellulose concentration",

default =0.05318708961 , units="g/cm^3", rangeStart

=0.0) ,

FloatParameter(’linginConcentration ’, description="

Lingin concentration",

default =0.006058529380 , units="g/cm^3", rangeStart

=0.0) ,

FloatParameter(’cuticleUndulationsAspectRatio ’,

description="Cuticle undulations aspect ratio",

default =10.0, rangeStart =1.0, rangeEnd =50.0, step

=0.5,

helpText="Lower values result in more roughness and

a more diffuse behaviour."),

FloatParameter(’epidermisCellCapsAspectRatio ’,

description="Epidermis cell caps aspect ratio",

default =5.0, rangeStart =1.0, rangeEnd =50.0, step

=0.5,

helpText="Lower values correspond to more prolate (

or rough) cell caps. This results in more

diffusion of the propegated light."),

FloatParameter(’spongyCellCapsAspectRatio ’, description=

"Spongy cell caps aspect ratio",

default =5.0, rangeStart =1.0, rangeEnd =50.0, step

=0.5,

helpText="Lower values correspond to more prolate (

or rough) cell caps. This results in more

diffusion of the propegated light."),

BooleanParameter(’sieveDetourEffects ’, description="

Simulate sieve and detour effects",

default=True , helpText="To account for the non -

homogeneous distribution of pigments (for details

, please refer to our related publications).")

]

attachments = [’spectral_distribution.csv’, ’reflectance.png’,

’transmittance.png’, ’absorptance.png’]

executable = "/home/tdimson/public_html/npsg/abmb_abmu_cpp/abmu"

13

def executableParameters(self):

if self.surfaceOfIncidence.value == "Abaxial":

angleIn = 180 - self.angleOfIncidence.value

else:

angleIn = self.angleOfIncidence.value

params = [

"-d", os.path.join(os.path.dirname(self.executable), "

data"),

"-n", str(self.nSamples.value),

"-p", str(angleIn),

"-s", str(5), #step

"-w", str(self.wavelengths.value [0]),

"-e", str(self.wavelengths.value [1]),

]

if not self.sieveDetourEffects.value:

params.append("-q")

params += ["sample.json",

"spectral_distribution.csv"

]

return params

def readDataTable(self):

wavelengths , reflectance , transmittance , absorptance = ([],

[], [], [])

with open(os.path.join(self.workingDirectory , "

spectral_distribution.csv"), ’r’) as f:

spectralReader = csv.reader(f)

headers = [e.strip() for e in spectralReader.next()]

wIndex = headers.index("wavelength")

rIndex = headers.index("reflectance")

tIndex = headers.index("transmittance")

aIndex = headers.index("absorptance")

for row in spectralReader:

wavelengths.append(float(row[wIndex]))

reflectance.append(float(row[rIndex]))

transmittance.append(float(row[tIndex]))

absorptance.append(float(row[aIndex]))

return wavelengths , reflectance , transmittance , absorptance

def latexDataTable(self):

14

wavelengths , reflectance , transmittance , absorptance = self.

readDataTable ()

latex = r"""

\begin{centering}

\begin{longtable }{l l l l}

\textbf{Wavelength} & \textbf{Reflectance} & \textbf{

Transmittance} & \textbf{Absorptance} \\

\hline

\endhead

%s

\end{longtable}

\end{centering}

""" % "\n".join("%snm & %s & %s & %s\\\\" % (w,r,t,a) for (w

,r,t,a) in zip(wavelengths ,reflectance , transmittance ,

absorptance))

return latex

def prepareExecution(self):

with open(os.path.join(self.workingDirectory , "sample.json")

, ’w’) as f:

f.write(json.dumps ({

"wholeLeafThickness": self.wholeLeafThickness.value ,

"cuticleUndulationsAspectRatio": self.

cuticleUndulationsAspectRatio.value ,

"epidermisCellCapsAspectRatio": self.

epidermisCellCapsAspectRatio.value ,

"spongyCellCapsAspectRatio": self.

spongyCellCapsAspectRatio.value ,

"palisadeCellCapsAspectRatio": 0.0,

"linginConcentration": self.linginConcentration.

value ,

"proteinConcentration": self.proteinConcentration.

value ,

"celluloseConcentration": self.

celluloseConcentration.value ,

"chlorophyllAConcentration": self.

chlorophyllAConcentration.value ,

"chlorophyllBConcentration": self.

chlorophyllBConcentration.value ,

"carotenoidConcentration": self.

carotenoidConcentration.value ,

"mesophyllFraction": self.mesophyllPercentage.value

/ 100

}))

def prepareGraphs(self):

15

wavelengths , reflectance , transmittance , absorptance = self.

readDataTable ()

axisWavelengthStart = wavelengths [0]

axisWavelengthEnd = wavelengths [-1]

plotCommand = plt.plot

if len(wavelengths) == 1:

axisWavelengthStart = wavelengths [0] - 100

axisWavelengthEnd = wavelengths [0] + 100

plotCommand = plt.scatter

plt.clf()

plotCommand(wavelengths , [e*100 for e in reflectance])

plt.xlabel("Wavelength (nm)")

plt.ylabel("Reflectance (%)")

plt.title(self.full_name)

plt.axis([axisWavelengthStart , axisWavelengthEnd , 0, max(

reflectance) * 100 + 5])

plt.savefig(os.path.join(self.workingDirectory , "reflectance

.pdf"))

plt.savefig(os.path.join(self.workingDirectory , "reflectance

.png"))

plt.clf()

plotCommand(wavelengths , [e*100 for e in transmittance])

plt.xlabel("Wavelength (nm)")

plt.ylabel("Transmittance (%)")

plt.title(self.full_name)

plt.axis([axisWavelengthStart , axisWavelengthEnd , 0, max(

transmittance) * 100 + 5])

plt.savefig(os.path.join(self.workingDirectory , "

transmittance.pdf"))

plt.savefig(os.path.join(self.workingDirectory , "

transmittance.png"))

plt.clf()

plotCommand(wavelengths , [e*100 for e in absorptance])

plt.xlabel("Wavelength (nm)")

plt.ylabel("Absorptance (%)")

plt.title(self.full_name)

plt.axis([axisWavelengthStart , axisWavelengthEnd , 0, max(

absorptance) * 100 + 5])

plt.savefig(os.path.join(self.workingDirectory , "absorptance

.pdf"))

plt.savefig(os.path.join(self.workingDirectory , "absorptance

.png"))

plt.clf()

16

def latexBody(self):

return r"""

These are the results of your run of the \textbf{ABM -U}

model provided by the

Natural Phenomenon Simulation Group (NPSG) at the

University of Waterloo.

The ABM -U employs an algorithmic Monte Carlo formulation

to simulate light interactions with unifacial plant

leaves

(e.g., corn and sugar cane). More specifically ,

radiation propagation

is treated as a random walk process whose states

correspond

to the main tissue interfaces found in these leaves. For

more

details about this model , please refer to our related

publications ~\cite{Ba06 ,Ba07}.

Although the ABM -U provides bidirectional readings ,

directional -hemispherical quantities (provided by our

online system)

can be obtained by integrating the outgoing light (rays)

with respect

to the outgoing (collection)

hemisphere. Similarly , bihemispherical quantities can be

calculated

by integrating the BDF (bidirectional scattering

distribution function)

values with respect to incident and collection

hemispheres.

The provided spectral curves (directional -hemispherical ,

reflectance ,

transmittance and absorptance) were obtained considering

an angle of incidence

measured with respect to the specimen ’s normal (zenith).

The curves

were obtained using a virtual spectrophotometer ~\cite{

Ba01}.

The researcher interested in BDF

(bidirectional scattering distribution function)

plots is referred to a publication describing the

implementation of virtual

goniophotometers ~\cite{Kr04}. These publications can be

found at:

\url{http ://www.npsg.uwaterloo.ca/pubs/measurement.php}

17

\begin{figure}

\begin{centering}

\includegraphics[width =5in]{ reflectance}

\caption{Directional -hemispherical reflectance .}

\end{centering}

\end{figure}

\begin{figure}

\begin{centering}

\includegraphics[width =5in]{ transmittance}

\caption{Directional -hemispherical transmittance .}

\end{centering}

\end{figure}

\begin{figure}

\begin{centering}

\includegraphics[width =5in]{ absorptance}

\caption{Directional -hemispherical absorptance .}

\end{centering}

\end{figure}

\newpage

\begin{thebibliography }{9}

\bibitem{Ba01}

Baranoski ,G.V.G.; Rokne ,J.G.; Xu ,G.

Virtual spectrophotometric Measurements for biologically

and physically -based rendering.

\textit{The Visual Computer}, Volume 17, Issue 8, pp.

506-518, 2001.

\bibitem{Ba06}

Baranoski G.V.G.

Modeling the interaction of infrared radiation (750 to

2500 nm) with bifacial and unifacial plant leaves.

\textit{Remote Sensing of Environment}, 100(3) :335-347 ,

2006.

\bibitem{Ba07}

Baranoski G.V.G.; Eng D.

An investigation on sieve and detour effects affecting

the interaction of collimated and diffuse infrared

radiation (750 to 2500 nm) with plant leaves.

\textit{IEEE Transactions on Geoscience and Remote

Sensing}, 45 (8) :2593 -2599 , 2007.

\bibitem{Kr04}

Krishnaswamy ,A.; Baranoski ,G.V.G.; Rokne ,J.G.

18

Improving the reliability/cost ratio of goniophotometric

comparisons.

\textit{Journal of Graphics Tools}, Volume 9, Number 3,

pp. 1-20, 2004.

\end{thebibliography}

\newpage

\appendix

\section{Parameter List}

%s

\newpage

\section{Data List}

%s

""" % (self.latexParameterTable (), self.latexDataTable ())

19

	Introduction
	Quick Start
	Models
	Helper classes
	StandaloneTask
	MatlabTask

	NPSGD Pipeline
	Model Pipeline
	Model Implementation
	Defining a class
	Parameters
	Parameter Options
	Parameter Types
	Attachments
	Graphical Output
	LaTeX Output
	Reading Parameter Values
	Helpers: StandaloneTask
	Helpers: MatlabTask

	Complete Example of a Matlab Task
	NPSGD Code
	Matlab Code

	Complete Example of ABM-U

